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SiGamal is an IND-CPA secure public-key encryption using the group action in CSIDH without
hash function. The name comes from supersinguler isogeny encryption that is similar to the
ElGamal encryption [5].

1 Background
1.1 Group Actions in CSIDH

First, we recall the group actions used in CSIDH since these are also used in SiGamal.

Let p > 3 and E be a supersingular elliptic curve over F,. We denote the [Fy-endomorphism
ring of £ by Endp, (£). This ring has a subring Z[,], where 7, is the p-Frobenius endomorphism.
Z[mp) is isomorphic to Z[\/—p] since E is supersingular. Endg, (£) is isomorphic to Z[/—p] or
Z [@} (§2 in [4]). For O = Z[\/—p] or Z [@}, we define EU,(O) as the set of F,-
isomorphism classes of supersingular elliptic curves whose F,-endomorphism ring is isomorphic to
O. To ease notation, we use the same symbol for an [Fp-isomorphism class of curves and a curve
in the class. We denote the ideal class group of O by (/(O). For an ideal a of O, we denote the
class of a by [a].

Let E € E¢,(O) and a be an integral ideal of O. We define the a-torsion subgroup of E by

Ela] ={P € FE|a(P)=0 for all a € a}.

Then there exists an elliptic curve E' € £#,(O) and an isogeny ¢ : E — E’ with ker p = EJal.
The curve E’ is determined by the class [a] as the class in E,(O). We denote the class of E' by
[a] * E. From this, we can define an action of C/(O) on EU,(O). This action is free and transitive
(Theorem 7 in [3]).

In the case that p = 3 (mod 4), an Fp-isomorphism class in E¥,(Z[\/—p]) can be determined
by an expression in the Montgomery form. More precisely, we have the following.

Proposition 1 (Proposition 3 in [2]). Let p > 3 be a prime number such that p =3 (mod 4) and
E a supersingular elliptic curve over F,. If Endy, (E) = Z[\/—p] then there exists a coefficient
a € Fp for which E is F,-isomorphic to the curve E : y?2 = 23 4+ ax? + x. Furthermore, the
coefficient a is unique.

This proposition allows us to use the Montgomery coefficient a as an identifier of a class in
EW,(Z[/—p]). A more general result for a relation between the coefficient of curves and endomor-
phism rings is summarized in Table 1 in [2].

1.2 Isogeny Image

SiGamal uses a ciphertext derived from the image of a point under a secret isogeny instead of a
Montgomery coefficient. We show a property of images of points under isogenies corresponding to
class group actions.
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Proposition 2. Let O = Z[/—p| or Z [@}, E € &U,(0), and a be an invertible integral

ideal of O. Let E' € EUL(O) and ¢, : E — E' be separable isogenies defined over IF,, with kernel
Ela]. Then we have (P) = (P) or ¢(P) = —¢(P) for all P € E.

Proof. See Theorem 4 and Lemma 1 in [7]. O

Consider the set F’/{#1}, in which Q € E’ and —Q are equivalent. We denote the class of
©(P) in the above proposition by a* P. If E’ is a Montgomery curve, then elements in F’/{+1}
are uniquely determined by the z-coordinates. Note that for ideals a,b in the same class, a * P
may differ from b x P in general.

1.3 Public Key Encryption

Public key encryption (PKE) consists of three algorithms, KeyGen, Enc, and Dec. KeyGen takes a
security parameter A as input and outputs a secret key sk, a public key pk, and a message space
M. Enc takes a plaintext y € M and pk as input and outputs a ciphertext c. Dec takes ¢ and
pk as input and outputs a plaintext f. If g = i, then we call a PKE is correct.

We define three properties for the security of PKEs, OW-CPA (one-wayness for chosen-
plaintext attacks), IND-CPA (indistinguishability for chosen-plaintext attacks), and IND-CCA
(indistinguishability for chosen-ciphertext attacks).

Definition 1 (OW-CPA secure). Let P be a PKE with a plaintext message space M. We say
that P is OW-CPA secure if, for any efficient adversary A,

(pk, sk) < KeyGen(\), p &M,
¢ < Enc(pk, i), p* < A(pk,c)

*

Pripu=p < negl(A),

where p & M means that w is uniformly and randomly sampled from M.

Definition 2 (IND-CPA security). Let P be a PKE with a plaintext message space M. We say
that P is IND-CPA security if, for any efficient adversary A,

(pk, sk) « KeyGen(}), png, 11 < A(pk),

* 1
Prib=0"|p& {0,1}, ¢ + Enc(pk, up), 5= negl(A).
b* <+ A(pk,c)

Definition 3 (IND-CCA secure). Let P be a PKE with a plaintext message space M. We say
that P is IND-CCA secure if, for any efficient adversary A,

(pk, sk) « KeyGen()), po, 1+ A°)(pk),
Pr|b=0b"|b& {0,1}, ¢« Enc(pk, ), -
b* «— A% (pk,c)

where O(+) is a decryption oracle that outputs Dec(sk, ¢*) for all ¢* # c.

1.4 PKE from CSIDH

We consider constructing a PKE from CSIDH. A natural way is as follows:

KeyGen()\): Take a prime p of form p = 4-£; - - - £, — 1 such that the size of p satisfies the X security

L. Let Ey be the elliptic curve y? = x3 +x. A secret key sk is an integer vector (eq,...,e,),
where (ey,...,e,) in a subset of Z" with cardinality about 22*. Take an ideal a = [{* - - - [¢n

where [; is the prime ideal generated by ¢; and m, — 1 for ¢ = 1,...n. A public key pk is
[a] * Ey. A message space M is F,.

IThe original paper of CSIDH [3] takes p ~ 2**. The quantum-secure size of p is now under discussion [1, 8].



Enc(p, pk): Take a random integer vector (ef,...,el,), where (ef,...,e),) in the same set as

(e1,...,en). Let b= [ill - [f;", S be the Montgomery coefficient of [a][b] * Ey, and s = S+ p.
The ciphertext ¢ is a pair ([b] * Ey, s)

Dec(c, sk): Compute the Montgomery coefficient S of [ab] * Ey = [a] % ([b] * Ep). The output j is
s—S.

This PKE is not IND-CPA secure since a supersingularity test (it has a polynomial time in log p.
See [10]). For two candidates po and up of a plaintext p, an adversary tests the supersingularity
of the curves with Montgomery coefficients ¢ — pg and ¢ — pq. If pg is the plaintext, then the curve
with coefficient ¢ — ug is supersingular, and the other curve is ordinary with a probability of about
1 —1//p. Therefore, the adversary can distinguish the plaintext.

To make this PKE IND-CPA secure, we need to use a cryptographic hash function. Let
H :F, — F, be a cryptographic hash function. If we change the ciphertext ¢ to H(S) + p in Enc
of the above protocol, then the protocol is IND-CPA secure under the assumption that CSIDH
and the hash function H are secure.

2 Basic Protocol

SiGamal achieves the IND-CPA security by taking hidden information from a point of a curve,
not from a curve. The idea comes from the assumption that the image of a point of a specific
order under a hidden isogeny cannot be distinguished from a random point of the same order.

2.1 Computational Assumption in SiGamal
First, we consider the following problem.

Problem 1. Given E, E’ € £l,,(O) and P € E, find a % P such that E' = [a] * E.

This problem does not make sense since £ and E’ determine the ideal class [a] but not the
ideal a. As we mentioned in Section 1.2, the image of P depends on a representative of the ideal
class.

To resolve this obstacle, we use a diagram in CSIDH and images under the isogenies,



(Eo, Py) - ([a] * Eo,a* Pp)

bi i[Qu-&-l]ob

([6] * Eo, b x Fy) ([a][6] * Eg, (2 + 1)ab * Py)

a ([a][b] * Eo, ab * Py)

Figure 1: Diagram of SiGamal. The black symbols are public. The red symbols are privately
computed by the sender, and the blue symbols by the receiver.

2.2 Protocol

SiGamal uses the characteristic p of form 2"¢; --- ¢, — 1, where ¢1,..., ¥, are distinct small odd
primes. As in CSIDH, secret keys of SiGamal are products of prime ideals above ¢1,...¢,. A
secret key of SiGamal is an ideal I]* - - - [¢n, where ey, ..., e, are integers sampled from a certain

subset of Z™. The factor 2" of p + 1 determines the message space of SiGamal. More precisely,
the message space is the set of integers from 0 to 272 — 1.

In the protocol of SiGamal, we use Montgomery curves and represent a curve by its Montgomery
coefficient and a point by its z-coordinate, i.e., these are represented by elements in F,. The
protocol is as follows (Figure 1 illustrates this protocol.):

KeyGen(\): Take a prime p of form p =2" -y --- ¢, — 1 whose size is as same as in CSIDH of the
security level . Let Ey be the elliptic curve y? = 23 + z and Py a point in Ey(F,) of order
2". A secret key sk is an integer vector (v, €1, ..., e,), where « is an odd number in [1, 2" —1]
and (e, ...,e,) in a subset of Z" with cardinality about 22}, Take an ideal a = al' - - [~
A public key pk is a pair ([a] * Eg,a* Py). A message space M is [0,2"72 — 1] N Z.

Enc(p, pk): Take a random integer vector (8, €,..., el ), where § is an odd number in [1,2" — 1]
and (e},...,e,) in the same set as (e1,...,e,). Let b = BI{*---[;". The ciphertext c is a

tuple ([b] * Ey, b Py, [a][b] * Eo, (21 + 1)ab x Py)

Dec(c, sk): Compute abx Py = ax(bxPy). Solve a discrete logarithm for ab Py and (2pu+1)ab* Py
by using Pohlig-Hellman algorithm [9]. Let M be the solution. We can take M in [0,2" — 1].
Because the points ab x Py and (2u 4 1)ab * Py have order 2", the integer M is odd. If
M < 27! then the output i is (M — 1)/2. Otherwise, fi is (2" — M —1)/2.

2.3 Security

We define security assumption in SiGamal. P-CSSDDH assumption defined below says that the
solution of Problem 2 cannot be distinguished from a random point of the same order.

Definition 4 (P-CSSDDH (Points-Commutative Supersingular Isogeny Decisional Diffie-Hellman)
assumption). Let p be a prime of form p = 2" - ¢y ---£, — 1, where ¢;,...¢, are small distinct
odd primes. Let Ey be the elliptic curve y* = 2% + x, Py be a uniformly random point in Ey(F,)
of order 2", and a and b be ideals in Z[/—p] whose norms are odd. Furthermore, let @ be a
uniformly random point of order 27 in ([a][b] * Ey)(Fp). Set A as the bit length of p.

The P-CSSDDH assumption holds if, for any efficient algorithm A,

1

b & {0,1}, Ry :=ab* Py, Ry = Q, — = | < negl(\).

b* ./4(E(),F)07 [Cl] * Eo,a * P07 [b] * E(), b *x P(), [Cl] [b} * E(],Rb)

[N]

Pr{b—b*

Assuming P-CSSDDH assumption, SiGamal is IND-CPA secure (Theorem 8 in [7]).



(Eo, Py) : ([a] * Eo, a* Pp)

| I

([b] * Eo, b x Pp) ([a][b] * Eo, ab * Fy)
[M*]\L i[(zlﬁ‘l)}
([6] * Eo, u*b x Py) ([a][b] * Eo, (214 + 1) Pajje)« )
a ([a][6] * Eo, u*ab x Py)

Figure 2: Diagram of C-SiGamal. The black symbols are public. The red symbols are privately
computed by the sender, and the blue symbols by the receiver.

3 Compressed Version

We use the same symbols as in SiGamal in this section. A ciphertext of SiGamal is a tuple
([6] * Eo,b = Py, [a][b] * Eg,ab x Py). The receiver of this ciphertext does not need the curve
[a][b] * Ey because it can be computed from [b] * Fy and the secret key a. So we have a tradeoff
between the computational cost of the decryption and the size of ciphertext. This observation
leads us to a compressed version of SiGamal, C-SiGamal.

In C-SiGamal, we use a distinguished point of order 2" in a Montgomery curve. To do so,
we prepare an efficient algorithm that takes a Montgomery curve E as input and outputs a point
Py € E(F),) of order 2”. We discuss how to construct such an algorithm in Section 3.2.

3.1 Protocol

Using distinguished points, we can drop [a][b] * Ey and ab * Py from a ciphertext. A concrete
description of the protocol is as follows (Figure 2 illustrates this protocol):

KeyGen(\): The same as the uncompressed SiGamal.

Enc(p, pk): Take a random ideal b as same as in the uncompressed SiGamal. Find an integer p*
such that p*ab* Py = (24 + 1) Prgj[e)«5, by Pohlig-Hellman algorithm. The ciphertext c is a
pair ([b] * Eg, u*b * Pp)

Dec(c,sk): Compute p*abx Py = ax(u*bxFp). Find an integer M such that M Piq)p)«g, = p1*abx Py
by Pohlig-Hellman algorithm. We can take M in [0,2" — 1]. Because the points ab x Py and
(2p + 1)ab * Py have order 27, the integer M is odd. If M < 27! then the output f is
(M —1)/2. Otherwise, i is (2" — M —1)/2.

C-SiGamal is also IND-CPA secure under P-CSSCDH assumption (Theorem 11 in [7]).

3.2 Distinguished Points

We discuss how to determine distinguished points. A simple algorithm for a Montgomery curve
E is as follows:

1. Set £ =2. 2
2. Let P be a point on E of z-coordinate &, and check P € E(F,) and the order of P is divisible
by 27.

3. If P satisfies the condition, then output Pg = ¢ --- £, P.

2In a Montgomery curve, the point of z-coordinate 0 has order 2, and the points of z-coordinate 1 have order 4.



4. Otherwise, change € to ¢ + 1 and go to Step 2.

This algorithm, however, is not efficient in the case that ¢4,..., ¢, contains all odd primes below
a certain number and r > 3. The reason is that the smallest £ satisfying the condition in Step 2
is relatively large, so one should check the condition many times. This comes from the following
proposition.

Proposition 3 (Proposition 1 in [7]). Let p be a prime such that p = 3 (mod 4), and E be a
Montgomery curve in EU,(Z[\/=p]). Then, for P € E(F,)\E[2], the x-coordinate of P is in F*
if and only if P is in 2E(F,).

For a SiGamal prime p = 2"¢; --- ¢, — 1, we have {; = 1 (mod p) fori =1,...,n. Furthermore,
if r > 3, then 2 is in F;z. Therefore, all numbers factored into a product of 2 and /¢4, ...,¥4, are
also in JF;;Q. This is the reason that the above algorithm is not efficient.

This problem can be easily solved by taking & from negative integers. Il.e., we modify Step 2
in the above algorithm to £ = —2 and Step 4 to £ — 1.

4 IND-CCA Security

Finally, we quickly look at the IND-CCA security of SiGamal and related recent progress.

As shown in [7], SiGamal is not IND-CCA secure. Consider the situation in Figure 1. A CCA
adversary can compute 3(2u + 1)b * Py from the given ciphertext. Then the adversary decrypt a
ciphertext ([b] x Eg, b * Py, [a][6] * Eg, 3(2u + 1)b x Py) by using the oracle. The decrypted message
is 3 + 1 and the adversary obtain the message p from this.

Remark 7 in [7] suggests that a variant of SiGamal that omits [a][b] * Fy from the ciphertext
could be IND-CCA secure. However, Fouotsa and Petit [6] proved that the variant is not IND-
CCA secure (Corollary 1 in [6]). Roughly speaking, the reason is that an adversary can compute
a scalar multiplication of b x P and can imitate a ciphertext for the same secret random ideal b
and another plaintext. In addition, Foutosa and Petit [6] proposed a new scheme that resists the
above attack, SimS (Simplified SiGamal), a PKE based on C-SiGamal. SimS is IND-CCA secure
under some new assumptions.
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