
Three Wise Men:
Models and Maps in Modern ECC

Joost Renes

NXP Semiconductors, Eindhoven, The Netherlands

September 11, 2021

Abstract

This text was written for the isogeny-based cryptography school (week 10) hosted
by the University of Bristol in July–September 2021. The goal of this lecture is to
familiarize the readers with the most popular (i.e., Weierstrass, Montgomery and
(twisted) Edwards) elliptic-curve models used in cryptography. By the end the
reader should understand the choices made in elliptic-curve cryptography, both in
the past (including discrete-log-based crypto) and for the current post-quantum pro-
posals CSIDH and SIKE. This is by no means a complete overview of the subject–
References are included that contain further reading material.

1 Introduction

Recall that elliptic-curve cryptography is classically based on the discrete logarithm prob-
lem. That is, for a (large1) prime p > 3, an elliptic curve E/Fp and a point P ∈ E(Fp) of
(large enough) prime order, for any Q ∈ 〈P〉 it is difficult to find λ ∈ [0, #〈P〉 − 1] such
that Q = [λ]P. As a result, the most important arithmetic operation is scalar multiplica-
tion

λ : P 7→ [λ]P .

This is an especially simple to describe operation, yet much has been written about
how to perform it. There are several reasons for this: firstly, the scalar λ typically cor-
responds to a secret key, meaning that the scalar multiplication has to be performed as
independently from λ as possible (e.g., no time or power dependence, which will be
discussed in upcoming lectures). Secondly, there are many ways to implement scalar
multiplication (or exponentiation). For example, there are left-to-right and right-to-left
bit-scanning techniques, or the clever Montgomery ladder algorithm [10]. However,

1We always assume that finite field characteristics are cryptographically large (say > 256-bit) primes.
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these two choices are mostly independent of the underlying group in which the multi-
plication is performed.

We shall rather concern ourselves with yet another dimension: the choice of repre-
sentation of the elliptic curve. While E, and the operations on it required for cryptog-
raphy, can be described completely independently from its embedding into projective
space, the embedding becomes crucial once we actually want to compute a scalar mul-
tiplication. That is, to even store a point P on a computer we cannot treat it as a purely
abstract element, but have to decide on a representation. Many introductory texts on
elliptic curves choose the (short) Weierstrass model y2 = x3 + ax + b, which applies to
any elliptic curve, that allows representing P = (x, y) ∈ A2 as two elements in Fp (or
three in P2). However, this choice is not a canonical one and there exist many choices of
models (i.e., embeddings into projective space). The natural question is therefore: which
representation is best? To look ahead: in this lecture we shall not answer this question,
as there are as many opinions as there are embeddings (in particular depending on your
definition of good and best). Instead, we introduce several choices that appear in cryp-
tography nowadays and leave it to the reader to form their own opinion.

Of course, this is the isogeny school and not the scalar multiplication school. Analo-
gous statements hold for isogeny-based algorithms: not only is scalar multiplication an
important part of such protocols, the isogeny computations themselves are also strongly
dependent on the choice of model.

Exercise 1. The choice of representation not only impacts the computations, but also the
cryptographic key sizes. Identify for elliptic-curve Diffie–Hellman, CSIDH and SIKE
which properties of models might benefit the public-key sizes.

In this lecture we focus on the Weierstrass, Montgomery and (twisted) Edwards mod-
els. It is of course worth noting that many of the formulas that we describe are the
culmination of many years of development by various authors. Moreover, many more
interesting models have been proposed over the years but in the interest of space we do
not treat them in much detail here. Examples include the twisted Hessian [3], Huff [9]
and the Jacobi quartic models. As there is much literature on elliptic-curve models and
their efficiency for cryptography, we do not attempt to summarize it all in this lecture.
Rather we try to create an intuition on what differentiates the Weierstrass, Montgomery
and (twisted) Edwards curves and, just as importantly, what connects them. This should
set up the reader to start working out formulas for themselves and see if they can im-
prove on the state-of-the-art.

Remark 1. As the treatment of elliptic-curve formulas is typically very computational
(i.e., tedious), it can be helpful to make use of computer algebra package. Typical choices
are magma [6] or sage [13].
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2 Group Operations

In this section we first focus on operations that are performed on a single curve, i.e., in
the group of points. Although we ultimately want to compute isogenies to other curves,
group operations still play an important role. For example, recall that computing 2e-
isogenies for large e in SIKE involves many group doublings. Similarly, any pe1

1 · · · p
ek
k -

isogeny for distinct primes pi and small integers ei for 1 ≤ i ≤ k involves (scalar)
multiplications by the various pi. As the group arithmetic was chronologically first
introduced into cryptography, we do the same here. Moreover, a lot of work has been
done over the last decades to make the group arithmetic as efficient as possible. This
will help build intuition about what it means to be efficient in the first place, and the
strategies that have been used to improve this.

2.1 Weierstrass form

As mentioned in the introduction, we no longer want to think of an elliptic curve ab-
stractly, but rather with an explicit embedding into affine or projective space. From this
point onwards we write E/Fp : y2 = x3 + ax + b ⊂ A2 for an elliptic curve in Weier-
strass form defined over Fp, with neutral element at infinity (using the homogeneous
embedding into P2). Through an elementary geometric description one shows that for
affine points P = (s, t) and Q = (u, v) such that P 6= ±Q, then R = (w, z) is given by

w = λ2 − s− u , z = −λw− µ ,

where λ = (v− t)/(u− s) and µ = (tu− sv)/(u− s). Having written down this group
law, we can analyze its cost. For this we tyically distinguish finite field operations:

• Field addition/subtraction, denoted A;

• Field multiplication, denoted M;

• Field inversion, denoted I.

Exercise 2. For a prime of 256 bits and a platform with 32-bit words, argue why the cost
of field multiplications is higher than that of additions or subtractions. (Note: a 32-bit
platform represents 256-bit integers as n = ∑7

i=0 ni232i where ni ∈ [0, 232 − 1].)

Exercise 3. Show that the Weierstrass group law above for affine points P 6= ±Q can be
computed with fewer than 6M + 6A + I operations.

From Exercise 2 we learned that the cost of multiplication can be considered to be
much higher than additions or subtractions. On the other hand, the cost of inver-
sion is even much higher still. One of the simplest ways to implement this is by us-
ing the fact that the multiplicative subgroup of Fp is cyclic of order p − 1, and hence
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that xp−2 ≡ x−1 mod p for any x ∈ Fp. The inversion can therefore be computed by
an exponentiation with p− 2. Although there are much more involved algorithms for
inversions (e.g., similar to gcd computations), the exponentiation has the advantage of
having runtime independent of the base element. As the base elements can be related
to the secret key, this is a very desirable property.

Exercise 4. Argue that for large primes the cost of a field inversion is higher than that of
a multiplication.

Exercise 5. Using the homogeneous projective embedding x = X/Z and y = Y/Z into
P2, show that the group law can be implemented without inversions in projective space.
How many multiplications are required? Do you expect this to be more efficient than
using affine formulas?

Exercise 6. Instead of the homogeneous embedding into projective space, one could
also use the Jacobian coordinate embedding x = X/Z2 and y = Y/Z2. How many
multiplications are required for the group operation in this case?

Remark 2. The exercises above argue that I > M > A. Although this is generally true on
a given platform, the actual ratio between them depends strongly on the platform. We
refer to the next lecture by Daniel Bernstein for several integer multiplication methods
and their associated costs. It is often possible to save a multiplication by spending a
number of extra additions: whether this is worth it, depends on the implementation.
Moreover, it is for example possible to further distinguish multiplications into generic
multiplications and squarings, where the latter can often be implemented more cheaply.

2.2 Montgomery form

We now move towards the Montgomery form. First consider the curve in long Weier-
strass form

E0/Fp : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 .

We show that a Montgomery curve can be defined as an elliptic curve with the addi-
tional requirement that Q = (0, 0) is a point of order two whose tangent line is defined
by x = 0.

Exercise 7. Assume that Q = (0, 0) ∈ E0. Show that a6 = 0.

Exercise 8. Assume that Q = (0, 0) has order 2. Show that a3 = 0.

Exercise 9. Assume that x = 0 is the tangent line to Q = (0, 0). Show that a4 6= 0.

Exercise 10. Transform E0 into E1 : y2 = x3 + b2x2 + b4x for b2, b4 ∈ Fp with b4 6= 0.
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Exercise 11. Transform E1 into M : By2 = x3 + Ax2 + x for A, B ∈ Fp with B 6= 0.

The form in Exercise 11 is what we call the Montgomery model, named after Peter Mont-
gomery who first introduced it [11]. The definition of the Montgomery model addition-
ally assumes that A, B ∈ Fp, which is not necessarily true in Exercise 11. More precisely,
E0 might only admit a Montgomery model over a quadratic extension of Fp. Note that
there exist similar models where Q is a point of higher order, which leads to the Tate
Normal Form. These models are at the core of radical isogenies, presented also this week
by Fre Vercauteren.

At this point the Montgomery form might not look particularly different from the
short Weierstrass form. However, the action of Q on x-coordinates is especially nice.
We shall see that this strongly influences the simplicity of the isogeny formulas (see
Exercise 27).

Exercise 12. Let P = (s, t) ∈ M(Fp) and Q = (0, 0). Show that xP+Q = 1/s.

We observe in Exercise 12 that the action of the origin is very simple on x-coordinates,
but this is not necessarily true for y-coordinates. Similar behavior happens for the group
operation and isogeny formulas. Luckily, as mentioned for example by Craig Costello
last week, it suffices for cryptographic protocols to work on the Kummer line of a curve.
For the Weierstrass and Montgomery models this corresponds to the x-line, hence it
suffices to provide nice formulas for this.

Exercise 13. Let P1 = (x1, y1) and P2 = (x2, y2) be points in M(Fp) such that P1 6= ±P2
and x1x2 6= 0. Let P1 + P2 = (x3, y3) and P1 − P2 = (x4, y4). Show that

x3x4 =
(x1x2 − 1)2

(x1 − x2)2 .

Exercise 14. Let notation be as in Exercise 13 but assume P1 = P2 instead. Show that

x3 =
(x2

1 − 1)
4x1(x2

1 + Ax1 + 1)
.

Exercise 15. Show that addition and doubling can be implemented with 8 and 6 mul-
tiplications respectively in projective space, and without inversions. How does this
compare to Weierstrass form?

The Montgomery model is extremely popular: it is used for Curve25519 [1], one of the
most widely adopted curves for classical key exchange and adopted by NIST into their
SP 800-186 standard. It is also used throughout SIKE as it leads to the most efficient
arithmetic for (powers of) small degree isogenies. It was also originally proposed for
CSIDH, but in that case (twisted) Edwards curves have also proven to be highly effi-
cient. We discuss them next.
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2.3 (Twisted) Edwards form

We invert the chronological order in this section. We define a twisted Edwards curve [2]
as the (projective closure of the) elliptic curve defined by

E t : αx2 + y2 = 1 + δx2y2 .

for α, δ ∈ Fp such that αδ(α − δ) 6= 0. The base point is the affine point (0, 1). Note
that the homogeneous embedding into P2 does not work in this case, as it leads to sin-
gularities at infinity. Instead, the projective closure can be (other options exist) defined
by

αX2T2 + Y2Z2 = Z2T2 + δX2Y2 ⊂ P1 ×P1

by setting x = X/Z and y = Y/T.

Exercise 16. Let M : y2 = x3 + Ax2 + x be a Montgomery curve with A = (α + δ)/2.
Show that φ0 : (x, y) 7→ (x/y, (x + 1)/(x − 1)) is an isomorphism of elliptic curves
defined over Fp from M to E t.

Exercise 17. Let P = (s, t) ∈ E t. Show that −P = (−s, t). Find E t[2] and show that the
points at infinity all lie in E t[4].

Exercise 17 demonstrates a significant difference between the twisted Edwards form
and Weierstrass or Montgomery models. Whereas the neutral point of the latter models
lies at infinity and often has to be treated separately in addition formulas (though not
always, see [12]), the neutral point for twisted Edwards curves is affine. Moreover, any
point of odd order is affine. In a classical cryptographic context where we work in an
Fp-rational subgroup of prime order, we are guaranteed that all points defined over Fp
lie in the affine subset and we can obtain complete formulas on this set (assuming that δ
is non-square). In contrast to the well-known Weierstrass formulas, it is no longer nec-
essary to distinguish between doubling and addition, or between the neutral element
and any of the other points. A side-effect of the twisted Edwards model is that its order
is always divisible by 4. For example, it contains the point (0,−1) of order 2.

Exercise 18. Write down the projection of E t onto the Kummer line. Show that the
Kummer lines of M and E t are connected by an involution. (Would you change anything
in the definition of E t, if you had the chance?)

We define an Edwards curve [5] as the (projective closure of the) elliptic curve defined by

E : x2 + y2 = c2(1 + dx2y2) ⊂ A2

for c, d ∈ Fp with cd(1− dc4) 6= 0, with affine neutral element (0, c). This is slightly more
general than the model originally defined by Harold Edwards [7], but the main ideas
remain. Again, we embed it into P1 ×P1.
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Exercise 19. Show that φ1 : (x, y) 7→ (x
√

δ, y
√

δ/α) is an isomorphism of elliptic curves
defined from E t to E , for c2 = δ/α and d = α/δ. Show that φ1 is defined over Fp if
E t[4] ⊂ E t(Fp).

Exercise 20. Show that

φ2 : (x, y) 7→
(

4 + y2α− δ

(y2α/δ− 1)
√

αδ
,

4y
(y2α/δ− 1)x

√
α

)

is a 2-isogeny from E to M̂ : B̂y2 = x3 + Âx2 + x where B̂ = 1/
√

αδ and Â = −(α +

δ)/
√

αδ.

Exercise 21. Write down the x-line of a 2-isogeny M→ M̂ with kernel 〈(0, 0)〉.

Exercise 22. Write down doubling formulas on the twisted Edwards curve E t. How
does the cost compare to Weierstrass and Montgomery form?

In general the addition formulas on a twisted Edwards curve are given by

(x1, y2) + (x2, y2) 7→
(

x1y2 + y1x2

1 + δx1x2y1y2
,

y1y2 − αx1x2

1− δx1x2y1y2

)
,

which can be easily (with the help of sage/magma) be verified by using its isomorphic
Montgomery form. Besides the fact that these formulas are complete on the affine patch,
they are also symmetric on both the x- and y-line. That makes them much more suit-
able for generic additions, rather than Kummer line computations for the Montgomery
model works well. For example, the digital signature scheme EdDSA [4] is defined with
respect to the Ed25519 curve

E t/F2255−19 : −x2 + y2 = 1 +
121665
121666

x2y2 ,

which is isomorphic to Curve25519.

3 Isogenies

We now work out some explicit formulas for isogenies. Here we focus only on the
separable case as it is all that is required for for SIKE and CSIDH. Further, for simplicity
we focus on the point evaluation step of an isogeny, and not the computation of the co-
domain curve (which is also important!). We do not make any assumptions on fields
of definition, though in practice it is typically set up so that all computations on the
Kummer line and with curve coefficients can be performed over the base field.
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3.1 Weierstrass form

We assume that the reader is familiar with Vélu’s formulas, which for a subgroup

G ⊂ E : y2 = x3 + ax + b

define an isogeny φ such that ker φ = G as

φ : P 7→
(
xP + ∑

T∈G\O
(xP+T − xT), yP + ∑

T∈G\O
(yP+T − yT)

)
.

More concretely, Galbraith [8, Theorem 25.1.6] splits up G into its points of order 2 G2
and G1 such that

G = {O} ∪ G1 ∪ G2 ∪ {−T : T ∈ G1}
and shows that

xφ(P) = xP + ∑
T∈G1∪G2

t(T)
xP − xT

+
u(T)

(xP − xT)2 , (1)

where u(T) = 4y2
T and

t(T) =

{
3x2

T + a if T ∈ G2

6x2
T + 2a if T ∈ G1

.

The codomain curve is given by

E′ : y2 = x3 + (a− 5 · ∑
T∈G1∪G2

t(T))x + b− 7 · ∑
T∈G1∪G2

(u(T) + xTt(T))

Exercise 23. Write down 2- and 3-isogenies on the Kummer line of a short Weierstrass
curve. Assuming the inputs are in (homogeneous) projective coordinates, how many
operations does it take to compute the codomain curve and to evaluate a point at φ?

3.2 Montgomery form

As we know, the Montgomery model M is a special case of the (long) Weierstrass form
in which we have a point of order two at the origin (with vertical tangent line). There-
fore we could simply apply Vélu’s formulas to compute isogenies. However, although
Vélu’s formulas preserve long Weierstrass form, they do not necessarily preserve Mont-
gomery form. Therefore additional computation is necessary to transform it to its Mont-
gomery model, essentially moving a point of order 2 to the origin. In this section we
take a different route: we show how the additional structure of the model leads to nicely
structured isogenies as well.
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Exercise 24. Equation (1) still holds true for long Weierstrass form, though t and u need
to be slightly extended. Show that xφ(P) = w(xP)/v(xP) for polynomials v, w where
v(x) = ∏T∈G\O(x− xT).

Exercise 25. Let Q ∈ M such that Q 6∈ G. Show that

xφ(P) = xφ(Q) + c1(xP − xQ) ∏
T∈G\O

xP − xQ+T

xP − xT

for some unit c1.

Exercise 26. Let φ be an isogeny M from a Montgomery model. Show that without loss
of generationality we can assume that the co-domain curve is also in Montgomery form,
and that φ fixes 0 and 1 on the Kummer line.

Exercise 27. Let G ⊂ M be such that (0, 0) 6∈ G. Show that

xφ(P) = ±xP ∏
T∈G\O

xPxT − 1
xP − xT

.

is the x-line of an isogeny φ between Montgomery models with kernel G.

Exercise 28. Write down 2- and 3-isogenies on the Kummer line of a Montgomery curve.
Assuming the inputs are in (homogeneous) projective coordinates, how many field op-
erations does it take to evaluate a point at φ?

3.3 Twisted Edwards form

As the twisted Edwards form is quite different from the Weierstrass form, applying
Vélu’s formulas is not as trivial. Here we can instead use the fact that its Kummer line
is connected to that of the Montgomery model via an involution.

Exercise 29. Let ψ be an isogeny from a twisted Edwards curve with kernel G such that
(0,−1) 6∈ G and that ψ : (0,−1) 7→ (0,−1). Show that

ψ : y 7→ ∏T∈G(yT + y)−∏T∈G(yT − y)
∏T∈G(yT + y) + ∏T∈G(yT − y)

.

Exercise 30. Write down 2- and 3-isogenies on the Kummer line of a twisted Edwards
curve. Assuming the inputs are in (homogeneous) projective coordinates, how many
field operations does it take to evaluate a point at ψ?

From Exercise 30 we see that the cost of evaluating an isogeny at a point is linear in |G|.
In the case of cyclic isogenies, it is therefore linear in the order ` of the generator. We
refer to the next session by Daniel Bernstein for formulas that require only Õ(

√
`) field

operations.
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