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1 Introduction

Adj, Chi-Domínguez and Rodríguez-Henríquez posted in https://github.com/JJChiDguez/
sibc,1, a Python-3 library named Supersingular Isogeny-Based Cryptographic construc-
tions (SIBC). SIBC is a software tool that permits the efficient design an implementation
of a variety of isogeny-based cryptographic protocols and their main building blocks, in-
cluding the CSIDH, B-SIDH, SIKE and B-SIKE key exchange protocols. For example,
SIBC supports a combination of Vélu’s and

√
élu’s formulas, along with an adaptation

of the optimal strategies commonly used in SIDH/SIKE, to produce efficient implemen-
tations of several instantiations of CSIDH. Here efficiency is measured in terms of the
required number of field arithmetic operations. SIBC aims to provide fellow isogenistas
with an agile design tool for constructing and testing new isogeny-based primitives, while
keeping a constant-time execution of their procedures.

So far, SIBC has been used as a crucial software tool for fine-tuning and experimenting
with the algorithms presented in several papers recently produced within our research
group and collaborators [9, 12, 2, 10, 11].

The notes presented in this document are largely based on those papers.

1.1 Main building blocks

Generally speaking, performing isogeny map constructions and evaluations are the most
expensive computational tasks of any isogeny-based protocol. Concretely, the main build-
ing blocks required for the implementation of isogeny-based cryptography are,
∗francisco@cs.cinvestav.mx, francisco.rodriguez@tii.ae
1See https://github.com/JJChiDguez/sibc/blob/master/CONTRIBUTORS and the acknowledgment

section of this document for a complete list of contributors.
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• Three point ladder P + [k]Q: Given the points χ(P ), χ(Q), and χ(Q−P ) such
that P,Q − P /∈ {O, (0, 0)}, a right-to-left Montgomery ladder algorithm [21, 16]
can compute χ(P + [k]Q) at a per-step cost of one point addition (xADD) and one
point doubling (xDBL) operations, which are usually performed in the projective
space P1.2 The costs of one point addition and one point doubling are about the
same for SIDH and CSIDH.

• Optimal strategies: Optimal strategies were introduced in [17] for minimizing
the cost of the isogeny computations associated to SIDH. They permit to compute
degree-`e isogenies at a cost of approximately e

2 log2 e scalar multiplications by
`, e

2 log2 e degree-` isogeny evaluations, and e constructions of degree-` isogenous
curves. They apply equally well for CSIDH [20, 12], B-SIDH and B-SIKE [2].

• Differential addition chains: In the CSIDH protocol, any given scalar k is the
product of a subset of the collection of small primes `i dividing p+1

4 . Hence, one
can simply compute the scalar multiplication operation [k]P as the composition of
the shortest differential addition chains for each prime ` dividing k. Montgomery
ladders using differential addition chains can perform the scalar multiplication op-
eration [k]P at an average length of about 1.5dlog2(k)e steps [9]. Each Montgomery
ladder step involves the computation of one differential point addition and differ-
ential point doubling at a cost of 4M+ 2S+ 6a and 4M+ 2S+ 4a, respectively.

• Vélu: Since 1974, Vélu’s formulas (cf. [22, §2.4] and [29, Theorem 12.16]) have been
widely used to construct and evaluate degree-` isogenies. Using several elliptic curve
and isogeny arithmetic optimization tricks reported in the last few years [26, 14, 9].
The construction and evaluation of degree-` isogenies via Vélu’s formulas can be
obtained at a computational cost of roughly 6` field multiplications

•
√
élu: Using a baby-step giant-step approach, Bernstein, De Feo, Leroux and Smith

presented in [6] a new approach for constructing and evaluating degree-` isogenies
at a combined cost of just Õ(

√
`) field operations.

√
élu was extensively discussed

in Week 10.

1.2 Isogeny-based key exchange protocols

In this isogeny-based cryptography school, we have revised a number of isogeny-based
protocols and building blocks (often, the speakers have been the co-authors of the schemes
presented in their lectures and notes), including:

2 Points are mapped to P1 using:

χ : P2 7→ P1

(X,Y, Z) → (X,Z)
O → (1, 0)
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• SIDH: Jao and De Feo presented in [21] (see also [17]) the Supersingular Isogeny-
based Diffie-Hellman key exchange protocol (SIDH). SIDH operates with supersin-
gular elliptic curves defined over the finite field Fp2 , with p a prime of the form
p = 2eA3eB − 1. Different aspects of SIDH were discussed in this School during the
Weeks 3-6 and also this Week 11.

• SIKE: In 2017, the Supersingular Isogeny Key Encapsulation (SIKE) protocol, an
SIDH variant, was submitted to the NIST post-quantum cryptography standardiza-
tion project [3]. On July 2020, NIST announced that SIKE passed to the round 3 of
this contest as an alternate candidate. The efficient constant-time implementation
of SIKE has been covered during this Week 11.

• CSIDH: In 2018, the commutative group action protocol CSIDH was introduced
by Castryck, Lange, Martindale, Panny and Renes in [8]. CSIDH operates with
supersingular elliptic curves defined over a prime field Fp, and is a significantly
faster version of the Couveignes-Rostovtsev-Stolbunov scheme variant that was
presented in [18]. The efficient constant-time implementation of CSIDH has been
covered during this Week 11.

• B-SIDH: In 2019, Costello proposed a variant of SIDH named B-SIDH [13]. In B-
SIDH, Alice computes isogenies from a (p+1)-torsion supersingular curve subgroup,
whereas Bob has to operate on the (p− 1)-torsion subgroup of the quadratic twist
of that curve. B-SIDH can achieve similar classical and quantum security levels as
SIDH, but using [significantly] smaller public/private key sizes. On the other hand,
B-SIDH requires the computation of isogenies of considerable large degree.

2 Traditional Vélu and its square root version

A Montgomery curve [25] is defined by the equation EA,B : By2 = x3 + Ax2 + x, such
that B 6= 0 and A2 6= 4. For the sake of simplicity, we will write EA for EA,1 and will
always consider B = 1. Moreover, it is customary to represent the constant A in the
projective space P1 as (A′ : C ′), such that A = A′/C ′ (see [15]).

Let q = pn, where p is a large prime number and n a positive integer. Let E be a
supersingular Montgomery curve E : y2 = x3 + Ax2 + x defined over Fq, and let ` be
an odd prime number. Given an order-` point P ∈ E(Fq), the construction of a degree-
` isogeny φ : E 7→ E′ of kernel G = 〈P 〉 and its evaluation at a point Q ∈ E(Fq)\G
consists of the computation of the Montgomery coefficient A′ ∈ Fq of the codomain curve
E′ : y2 = x3 + A′x2 + x and the image point φ(Q), respectively. In these notes, we will
refer to these two tasks as isogeny construction and isogeny evaluation computations,
respectively.

2.1 Vélu

Vélu’s formulas (see [22, §2.4] and [29, Theorem 12.16]), have been generally used to
construct and evaluate degree-` isogenies by performing three main building blocks known
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KPS(≈ 3`) xISOG(≈ `)

xEVAL(≈ 2`)

x(P ) of order-`
point P

x(Q) 6∈ 〈P 〉

A Constant of
domain curve
E A′ Constant of

co-domain curve E′

x(φ(Q)), image of
point Q over E′

Figure 1: Traditional Vélu’s formulas for coumputing the isogeny construction and
isogeny evaluation operations. As shown in this figure, Vélu uses three main buliding
blocks: KPS, xEVAL and xISOG

as, KPS, xISOG and xEVAL(see Figure 1).
The block KPS computes the first k multiples of the point P , namely, the set {P, [2]P, . . . , [k]P}.

Using KPS as a sort of pre-computation ancillary module, xISOG finds the constants
(A′ : C ′) ∈ Fq that determine the codomain curve E′. Also, using KPS as a building
block, xEVAL calculates the image point φ(Q) ∈ E′. After applying a number of ellip-
tic curve arithmetic tricks [26, 14, 9], the associated computational costs of these three
building blocks can be summarized as,

• KPS: For each 1 ≤ i ≤ k we let (Xi : Zi) = x([i]P ), where 〈P 〉 = ker(φ).
Cost: ≈ 3`.

• xEVAL: One can compute (X ′ : Z ′) = x(φ(Q)) from (XQ : ZQ) = x(Q) as,

X ′ = XP

( k∏
i=1

[
(XQ − ZQ)(Xi + Zi) + (ZQ + ZQ)(Xi − Zi)

])2
Z ′ = ZP

( k∏
i=1

[
(XQ − ZQ)(Xi + Zi)− (ZQ + ZQ)(Xi − Zi)

])2
Cost: ≈ 2`.

• xISOG: Let us suppose that F is a subgroup of the twisted Edwards curve Ea,d
with odd order ` = 2s+ 1, s > 1. Let the points in F be given in twisted Edwards
Y Z-coordinates as the set,

{(Y1 : Z1), . . . , (Ys : Zs)}.
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Then, there exists a degree-` isogeny ψ with kernel F that takes us from the curve
Ea,d to the curve Ea′,d′ . The constants a′, d′ can be computed as,

By =

s∏
i=1

Yi; Bz =

s∏
i=1

Zi;

a′ = a`B8
z ; d′ = B8

yd
`. (1)

Cost: ≈ `.

Which gives an overall cost of about 6` multiplications for the combined cost of the
isogeny construction and evaluation tasks.

2.2 New Vélu’s formulas

In this subsection we present the
√
élu algorithms. For more details check [6, 2, 4] and

the notes given in this school during Weeks 10 and 11.
Let EA/Fq be an elliptic curve defined in Montgomery form by the equation y2 =

x3+Ax2+x, with A2 6= 4. Let P be a point on EA of odd prime order `, and φ : EA → EA′

a separable isogeny of kernel G = 〈P 〉 and codomain EA′/Fq : y2 = x3 +A′x2 + x.
Our main task here is to compute A′ and the x-coordinate φx(α) of φ(Q), for a

rational point Q = (α, β) ∈ EA(Fq)\G. As mentioned in [6] (see also [14], [24] and [27]),
the following formulas allow to accomplish this task,

A′ = 2
1 + d

1− d and φx(α) = α`
hS(1/α)

2

hS(α)2
, where

S = {1, 3, . . . , `− 2}, d =

(
A− 2

A+ 2

)`( hS(1)

hS(−1)

)8

, and

hS(X) =
∏
s∈S

(X − x([s]P )).

From the above, we see that the efficiency of computing A′ and φx(α) directly depends
on the cost of evaluating the polynomial hS(X) =

∏
s∈S(X−x([s]P )). A naive approach

would compute hS(X) by performing #S − 1 polynomial products. Alternatively, ex-
ploiting a baby-step giant-step strategy

√
élu obtains a square root complexity speedup

over a traditional Vélu approach. In the following, we briefly sketch this strategy.
Given EA/Fq an order-` point P ∈ EA(Fq), and some value α ∈ Fq we want to

efficiently evaluate the polynomial, hS(α) =
∏`−1
i (α− x([i]P )). From Lemma 4.3 of [6],

(X − x(P +Q))(X − x(P −Q)) = X2 +
F1(x(P ), x(Q))

F0(x(P ), x(Q))
X

+
F2(x(P ), x(Q))

F0(x(P ), x(Q))
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where,

F0(Z,X) = Z2 − 2XZ +X2; (2)

F1(Z,X) = −2(XZ2 + (X2 + 2AX + 1)Z +X);

F0(Z,X) = X2Z2 − 2XZ + 1.

This suggests a rearrangement à la Baby-step Giant-step as,

h(α) =
∏
i∈I

∏
j∈J

(α− x([i+ s · j]P ))(α− x([i− s · j]P ))

Now h(α) can be efficiently computed by calculating the resultants of polynomials of
the form,

hI ←
∏
xi∈I

(Z − xi)) ∈ Fq[Z]

EJ(α)←
∏
xj∈J

(
F0(Z, xj)α

2 + F1(Z, xj)α+ F2(Z, xj)
)
.

The most demanding operations of
√
élu require computing four different resultants

of the form ResZ(f(Z), g(Z)) for polynomials f, g ∈ Fq[Z]. We can compute those four
resultants using a remainder tree approach supported by carefully tailored Karatsuba
polynomial multiplications. In practice, the computational cost of performing degree-`
isogenies using

√
élu is close to K(

√
`)log2 3 field operations, with K a constant [2].

2.2.1 Concrete algorithms for KPS, xISOG, and xEVAL

As in section 2, we consider the three building blocks KPS, xISOG, xEVAL, where KPS com-
putes the x-coordinates of all the points in the kernel G, xISOG finds the codomain
coefficient A′, and xEVAL performs the computation of φx(α).

In traditional Vélu, KPS calculates the product of the x-coordinates of (#S = (` −
1)/2) points in the kernel G. As we have seen in Figure 1, this costs about 3` field
multiplications. More efficiently,

√
élu only computes the x-coordinates of points of G

with indices in three subsets of S, each of size O(
√
`). Denote by I, J and K those

subsets of S. Then, I and J are chosen such that the maps I × J → S defined by
(i, j) 7→ i+ j and (i, j) 7→ i− j are injective and their images I +J , I −J are disjoint.
The remaining indices of S are gathered in K = S\(I ± J ).

Algorithm 1 computes KPS at a computational cost of about ≈ 3b point additions =
18bM, and the storage of ≤ 8b field elements, where b = b

√
`− 1/2c.

Let us recall that for the efficient computation of xISOG and xEVAL,
√
élu uses the

biquadratic polynomials of Equation 2, which implies the computation of resultants of
the form ResZ(f(Z), g(Z)), for two polynomials f, g ∈ Fq[Z]. For polynomials f =
a
∏

0≤i<n(Z − xi) and g in Fq[Z], their resultant Res(f, g) = an
∏

0≤i<n g(xi) can be
computed efficiently when the factorization of f is known, which is exactly our case.
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Algorithm 1 Kernel points computation (KPS)

Require: An elliptic curve EA/Fq; P ∈ EA(Fq) of order an odd prime `.
Ensure: I = {x([i]P ) | i ∈ I}, J = {x([j]P ) | j ∈ J}, and K = {x([k]P ) | k ∈ K} such

that (I, J) is an index system for S, and K = S\(I ± J)
1: b← b

√
`− 1/2c; b′ ← b(`− 1)/4bc

2: I ← {2b(2i+ 1) | 0 ≤ i < b′}
3: J ← {2j + 1 | 0 ≤ j < b}
4: K ← S\(I ± J)
5: I ← {x([i]P ) | i ∈ I}
6: J ← {x([j]P ) | j ∈ J}
7: K ← {x([k]P ) | k ∈ K}
8: return I,J ,K

By means of a remainder tree approach, one evaluates one by one the factors g(xi) by
computing g mod (Z − xi), 0 ≤ i < n. Then the product of all those factors gives us the
resultant.

Thanks to the approach outlined above, the resultant ResZ(f(Z), g(Z)) of two poly-
nomials f, g ∈ Fq[Z] can be computed with an asymptotic runtime complexity of Õ(n)
by using a fast polynomial multiplication. Here fast means that this polynomial op-
eration has a O(n log2(n)) field multiplication complexity (see [5, p. 7, §3]). The
degree of the polynomials used for CSIDH and even B-SIDH, are sufficiently small so
that Karatsuba polynomial multiplication (or related approaches such as Toom-Cook),
emerges as the most efficient solution.Algorithm 2 and Algorithm 3 show the computa-
tion of the xISOG and xEVAL building blocks. All in all, the evaluation of KPS, xISOG,
and xEVAL procedures have a combined computational cost of approximately [2, §4.3],

Cost(b) = 4

(
3blog2(3) + b log2(b)−

5

3
b+

5

6

)
+

(
blog2(3) − 2

3
b

)
+ 2

(
3blog2(3) − 2b

)
(3)

+ 37b+ 3 log2(b) + 16

= 19blog2(3) + 4b log2(b) +
77

3
b+ 3 log2(b) +

58

3
.

One considerable advantage of using remainder trees here is that the subjacent prod-
uct tree of the (Z − xi) factors, can be shared among all the resultants in Algorithm 2
and Algorithm 3, since these linear polynomials depend only on the kernel 〈P 〉. In other
words, the four resultants in Algorithm 2 and Algorithm 3 show no dependencies among
them and therefore, they can be computed concurrently by a

√
élu parallel implementa-

tion.
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Algorithm 2 Codomain curve construction (xISOG)

Require: An elliptic curve EA/Fq : y2 = x3 + Ax2 + x; P ∈ EA(Fq) of order an odd
prime `; I,J ,K from KPS.

Ensure: A′ ∈ Fq such that EA′/Fq : y2 = x3+A′x2+x is the image curve of a separable
isogeny with kernel 〈P 〉.

1: hI ←
∏
xi∈I(Z − xi)) ∈ Fq[Z]

2: E0,J ←
∏
xj∈J (F0(Z, xj) + F1(Z, xj) + F2(Z, xj)) ∈ Fq[Z]

3: E1,J ←
∏
xj∈J (F0(Z, xj)− F1(Z, xj) + F2(Z, xj)) ∈ Fq[Z]

4: R0 ← ResZ(hI , E0,J) ∈ Fq
5: R1 ← ResZ(hI , E1,J) ∈ Fq
6: M0 ←

∏
xk∈K(1− xk) ∈ Fq

7: M1 ←
∏
xk∈K(−1− xk) ∈ Fq

8: d←
(
A−2
A+2

)` (
M0R0
M1R1

)8
9: return 2 1+d

1−d

Constant-time properties Note that the procedures Algorithm 1, Algorithm 2 and
Algorithm 3 compute

√
élu in constant-time since,

• There are no branches with secret conditions.

•
√
élu is a multiplicative-inverse-free procedure

• The three procedures KPS, xISOG and xEVAL are completely deterministic.

• The size of the sets I,J and K as defined in KPS, are a function of the [public]
parameter `.

• All the polynomial coefficients involved in the
√
élu computation are different than

zero. Hence, independently of the order-` point P , the cost of the primitives KPS,
xISOG and xEVAL is always the same.

• The remainder tree, which is at the heart of the two resultant computations, takes
the same cost for either xISOG or xEVAL.

• Changing the kernel point P does not affect the computational costs of KPS, xISOG
and xEVAL.

SIBC implementation Using the option ’-f’, SIBC supports three formulas for com-
puting isogenies: Vélu (tvelu),

√
élu (svelu) and a hybrid version of Vélu and

√
élu (hvelu).3

See Figure 4 for command line examples.
3hvelu switches to the most efficient formula depending on the value of the degree-` isogeny being

computed.
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Algorithm 3 Isogeny evaluation (xEVAL)

Require: An elliptic curve EA/Fq : y2 = x3 + Ax2 + x; P ∈ EA(Fq) of order an odd
prime `; the x-coordinate α 6= 0 of a point Q ∈ EA(Fq)\〈P 〉; I, J , K from KPS.

Ensure: The x-coordinate of φ(Q), where φ is a separable isogeny of kernel 〈P 〉.
1: hI ←

∏
xi∈I(Z − xi)) ∈ Fq[Z]

2: E0,J ←
∏
xj∈J

(
F0(Z,xj)

α2 +
F1(Z,xj)

α + F2(Z, xj)
)
∈ Fq[Z]

3: E1,J ←
∏
xj∈J

(
F0(Z, xj)α

2 + F1(Z, xj)α+ F2(Z, xj)
)
∈ Fq[Z]

4: R0 ← ResZ(hI , E0,J) ∈ Fq
5: R1 ← ResZ(hI , E1,J) ∈ Fq
6: M0 ←

∏
xk∈K(1/α− xk) ∈ Fq

7: M1 ←
∏
xk∈K(α− xk) ∈ Fq

8: return (M0R0)
2/(M1R1)

2

3 Loose notes on two isogeny-based key exchange protocols

Here, we give a simplified description of CSIDH and B-SIDH. For more technical details,
the interested reader on CSIDH and B-SIDH is referred to [8, 9, 23, 28], and [13, 2],
respectively.

3.1 Overviewing the C-SIDH

CSIDH is an isogeny-based protocol that can be used for key exchange and encapsula-
tion [8], and other more advanced protocols and primitives. Figure 2 shows how CSIDH
can be executed analogously to Diffie–Hellman, to produce a shared secret between Alice
and Bob. Remarkably, the elliptic curves EBA and EAB computed by Alice and Bob at
the end of the protocol are one and the same.

The flow of Figure 2 can be implemented in the SIBC library by executing the frag-
ment shown in Figure 3.

CSIDH works over a finite field Fp, where p is a prime of the form

p = 4

n∏
i=1

`i − 1

with `1, . . . , `n a set of small odd primes. For example, the original CSIDH article [8]
defined a 511-bit p with `1, . . . , `n−1 the first 73 odd primes, and `n = 587. This instan-
tiation is commonly known as CSIDH-512.

The set of public keys in CSIDH is a subset of all supersingular elliptic curves in
Montgomery form, y2 = x3 + Ax2 + x, defined over Fp. Since the CSIDH base curve E
is supersingular, it follows that #E(Fp) = (p+ 1) = 4

∏n
i=1 `i.

The input to the CSIDH class group action algorithm is an elliptic curve E : y2 =
x3+Ax2+x, represented by its A-coefficient, and an ideal class a =

∏n
i=1 l

ei
i , represented

by its list of secret exponents (ei, . . . , en) ∈ J−m . . mKn. The output is the A-coefficient

9



Public parameter:
E/Fp : By

2 = x3 +Ax2 + x,

Alice

(e1, . . . , en)
$←− J−m . . mKn

EA = le11 ∗ · · · ∗ lenn ∗ E

EBA = le11 ∗ · · · ∗ lenn ∗ EB

Bob

(f1, . . . , fn)
$←− J−m . . mKn

EB = lf11 ∗ · · · ∗ lfnn ∗ E

EAB = lf11 ∗ · · · ∗ lfnn ∗ EA

EA

EB

Figure 2: CSIDH key-exchange protocol

of the elliptic curve EA defined as,

EA = a ∗ E = le11 ∗ · · · ∗ lenn ∗ E. (4)

Taking advantage of the commutative property of the group action, we can implement
the protocol shown in Figure 2, which closely resembles the flow of the classical Diffie-
Hellman protocol. Alice and Bob begin by selecting secret keys a and b, and producing
their corresponding public keys EA = a∗E and EB = b∗E, respectively. After exchanging
these public keys and taking advantage of the commutative property of the group action,
Alice and Bob compute a shared secret as,

a ∗ EB = (a · b)E = (b · a)E = b ∗ EA.

3.1.1 CSIDH variants

Our library supports three CSIDH variants, namely, the Meyer–Campos–Reith constant-
time algorithm [23], the Onuki–Aikawa–Yamazaki–Takagi constant-time algorithm [28],
and the dummy-free algorithm [9].

One torsion point with dummy isogeny constructions (MCR-style) Meyer,
Campos and Reith proposed in [23] several ingenious optimizations that led to a fast
constant-time CSIDH group action computation.

One of the optimizations introduced in [23], was to sample a point using the Elligator
2 map of [7]. A second optimization, dubbed SIMBA-σ-κ, consisted of splitting the
processing of the prime factors `i as defined above, into σ disjoint sets (batches) of size
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from sibc.csidh import CSIDH, default_parameters
csidh = CSIDH(**default_parameters)

# alice generates a key
alice_secret_key = csidh.secret_key()
alice_public_key = csidh.public_key(alice_secret_key)

# bob generates a key
bob_secret_key = csidh.secret_key()
bob_public_key = csidh.public_key(bob_secret_key)

# if either alice or bob use their secret key with the other’s respective
# public key, the resulting shared secrets are the same
shared_secret_alice = csidh.dh(alice_secret_key, bob_public_key)
shared_secret_bob = csidh.dh(bob_secret_key, alice_public_key)

# Alice and bob produce an identical shared secret
assert shared_secret_alice == shared_secret_bob

Figure 3: Executing the CSIDH key exchange of Figure 2 using SIBC

n
σ . Afterwards, a multiplicative strategy is applied to each batch. Each multiplicative
strategy is evaluated κ times. Finally, instead of using a fixed interval [0, 10] for all
the isogeny computations, the authors proposed to define a customized interval per each
entry in the secret vector e. Thus, a vector m is defined such that 0 ≤ ei ≤ mi, for
i = 1, . . . , n. The missing prime factors are repaired using a multiplicative strategy, until
all the mi degree-`i isogeny constructions have been performed.

Two torsion point with dummy isogeny constructions (OAYT-style) Onuki,
Aikawa, Yamazaki and Takagi proposed a faster constant-time version of CSIDH in [28].
Their key idea is to use two points to evaluate the action of an ideal, one in ker(π − 1)
(i.e., in E(Fp)) and one in ker(π + 1) (i.e., in E(Fp2) with the x-coordinate in Fp).
This allows them to avoid timing attacks, while keeping the same primes and exponent
range [−5, 5] proposed in the original CSIDH algorithm [8]. Their algorithm also employs
dummy isogenies to mitigate power analysis attacks, as in [23].

This way, the approach of [28] achieves a better performance than [23]. The speedup
comes from the fact that the procedure proposed by [28] performs approximately five
isogeny constructions (as opposed to the ten constructions in [23]) and ten isogeny eval-
uations per `i.

Two torsion point without dummy isogeny constructions (Dummy-free style)
In [9], the authors presented a constant-time CSIDH group action computation that does
not use dummy computations. This gives some natural resistance to fault attacks, at the
cost of approximately a twofold slowdown. For the approach in [9], the exponents ei are
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# CSIDH
# A single random instances of a key exchange
sibc -p p512 -f hvelu -a csidh -s df -e 10 csidh-main
sibc -p p512 -f svelu -a csidh -s df -e 10 -m csidh-main
sibc -p p512 -f tvelu -a csidh -s df -e 10 -t csidh-main
sibc -p p512 -f hvelu -a csidh -s df -e 10 -m -t csidh-main

Figure 4: Executing a random dummy-free CSIDH key exchange of Figure 2 using a 512-
bit prime p, a selection/combination of Vélu and Vélu sqrt for the isogeny computations
and an integer range for the secret exponents between [−10, 10].

uniformly sampled from sets

S(mi) = {e | e = mi mod 2 and |e| ≤ mi},
i.e., centered intervals containing only even or only odd integers. The action of vectors
drawn from S(m)n can be computed by interpreting the coefficients ei as,

|ei| = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ei times

+(1− 1)− (1− 1) + (1− 1)− · · ·︸ ︷︷ ︸
mi−ei times

,

i.e., the algorithm starts by acting by l
sign(ei)
i for ei iterations, then alternates between

li and l−1i for mi − ei iterations.

SIBC implementation Using the option ’-s’, SIBC supports three CSIDH variants,
namely, the Meyer–Campos–Reith constant-time algorithm of [23], the Onuki–Aikawa–
Yamazaki–Takagi constant-time algorithm of [28], and the dummy-free algorithm of [9].
SIBC uses the following notation for the option ’-s’:

1. ’wd2’: ’OAYT-style’ (Two torsion point with dummy isogeny constructions)

2. ’wd1’: ’MCR-style’ (One torsion point with dummy isogeny constructions)

3. ’df’: ’dummy-free-style’ (Two torsion point without dummy isogeny constructions)

See Figure 4 for command line examples.

3.2 Playing the B-SIDH

B-SIDH was proposed by Costello in [13], Alice and Bob work in the (p + 1)- and (p −
1)-torsion of a set of supersingular curves defined over Fp2 and their quadratic twist
set, respectively. B-SIDH is effectively twist-agnostic because optimized isogeny and
Montgomery arithmetic only require the x-coordinate of the points along with the A
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coefficient of the curve.4 This feature implies that B-SIDH can be executed entirely à la
SIDH as shown in Figure 5.5

More concretely, as before let E : By2 = x3 + Ax2 + x denote a supersingular
Montgomery curve defined over Fp2 , so that#E(Fp2) = (p+1)2, and let Et/Fp2 denote the
quadratic twist of E/Fp2 . Then, Et/Fp2 can be modeled as, (γB)y2 = x3+Ax2+x, where
γ ∈ Fp2 is a non-square element and #E(Fp2) = (p − 1)2. Notice that the isomorphism
connecting these two curves is determined by the map ι : (x, y) 7→ (x, jy) with j2 = γ
(see [13, §3]).

Hence, for any Fp2-rational point P = (x, y) on Et/Fp2 it follows that Q = ι(P ) =
(x, jy) is an Fp4-rational point on E, such that Q+π2(Q) = O. Here π : (x, y) 7→ (xp, yp)
is the Frobenius endomorphism. This implies that Q is a zero-trace Fp4-rational point
on E/Fp2 .

B-SIDH can thus be seen as a reminiscent of the CSIDH protocol [8], where the
quadratic twist is exploited to perform the computations using rational and zero-trace
points with coordinates in Fp2 . Although B-SIDH allows to work over smaller fields
than either SIDH or CSIDH, it requires the computation of considerably larger degree-`
isogenies.

As illustrated in Figure 5, B-SIDH can be executed analogously to the main flow of the
SIDH protocol. B-SIDH public parameters correspond to a supersingular Montgomery
curve E/Fp2 : By2 = x3 +Ax2 + x with #E(Fp2) = (p+ 1)2, two rational points Pa and
Qa on E/Fp2 , and two zero-trace Fp4-rational points Pb and Qb on E/Fp2 such that

• Pa and Qa are two independent order-M points with M | (p + 1), gcd(M, 2) = 2,
and

[
M
2

]
Qa = (0, 0);

• Pb and Qb are two independent order-N points with N | (p−1) and gcd(N, 2) = 1.

In practice, B-SIDH is implemented using projectivized x-coordinate points, and thus
the point differences PQa = Pa − Qa and PQb = Pb − Qb must also be exchanged.
Since the x-coordinates of Pa, Qa, PQa, Pb, Qb and PQb, all belong to Fp2 , a B-SIDH
implementation must perform field arithmetic on that quadratic extension field. As in
the case of SIDH, the protocol flow of B-SIDH must perform two main phases, namely,
key generation and secret sharing. In the key generation phase, the evaluation of the
projectivized x-coordinate points x(P ), x(Q) and x(P−Q) is required. Thus for B-SIDH,
secret sharing is significantly cheaper than key generation.

The flow of Figure 5 can be implemented in the SIBC library by executing the frag-
ment shown in Figure 6

Moreover, B-SIDH can naturally be extended to include a key encapsulation mech-
anism analogous to the extension of SIDH that was named SIKE. Thus, we adopt the

4For efficiency purposes, in practice both, the x-coordinate of the points and the constant A of the
curve, are projectivized to two coordinates.

5Although we omit here the specifics of the operations depicted in Figure 5, they are completely
analogus to the ones corresponding to SIDH, a protocol that is carefully discussed in many papers such
as [17, 15, 1].
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Public parameter:
E/Fp2 : By2 = x3 +Ax2 + x,

Pa, Qa ∈ E[p+ 1] of order M , and Pb, Qb ∈ E[p− 1] of order N

Alice

ska
$←− J0 . . M − 1K

Ra = Pa + [ska]Qa

φa : E → E/〈Ra〉
Ea = E/〈Ra〉

Eab = Eb/〈φb(Ra)〉

Bob

skb
$←− J0 . . N − 1K

Rb = Pb + [skb]Qb

φb : E → E/〈Rb〉
Eb = E/〈Rb〉

Eab = Ea/〈φa(Rb)〉

Ea, φa(Pb), φa(Qb)

Eb, φb(Pa), φb(Qa)

Figure 5: B-SIDH protocol for a prime p such that M |(p+ 1) and N |(p− 1).

from sibc.bsidh import BSIDH, default_parameters
bsidh = BSIDH(**default_parameters)
sk_a, pk_a = bsidh.keygen_a()
sk_b, pk_b = bsidh.keygen_b()
ss_a, ss_b = bsidh.derive_a(sk_a, pk_b), bsidh.derive_b(sk_b, pk_a)
ss_a == ss_b

Figure 6: Executing the B-SIDH key exchange of Figure 5 using SIBC
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from sibc.sidh import SIKE, default_parameters
sike = SIKE(**default_parameters)
s, sk3, pk3 = sike.KeyGen()
c, K = sike.Encaps(pk3)
K_ = sike.Decaps((s, sk3, pk3), c)
K == K_

sike503 = SIKE(’montgomery’, ’p503’, False, False)
s, sk3, pk3 = sike503.KeyGen()
c, K = sike503.Encaps(pk3)
K_ = sike503.Decaps((s, sk3, pk3), c)
K == K_

Figure 7: Executing a B-SIKE key exchange using SIBC and the prime SIKEp503

name B-SIKE for the combination of B-SIDH plus a key encapsulation mechanism. The
implemenantion in SIBC of B-SIKE, is shown in the fragment of Figure 7.

4 Frequently asked Questions

4.1 Library and programming related
0. How can I install SIBC in a Unix-like terminal?

Use the following commands (For more details consult: https://github.com/
JJChiDguez/sibc/):

# Installing required package
# Before running the following commands, ensure you have the lastest version of pip
pip3 install dh click numpy progress matplotlib networkx stdeb setuptools-scm setuptools

# only pip3 install
pip3 install pytest pytest-xdist

# For MAC/Window/LINUX use
pip install sibc

# Installing the library
sudo pip3 install -e .

1. In which language was SIBC written?
SIBC is a Python-3 library. It is publicly available at: https://github.com/
JJChiDguez/sibc/

2. Is there a user guide for SIBC?
Once that the library is installed, automatically generated documentation is avail-
able via pydoc:
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pydoc3 sibc.csidh
pydoc3 sibc.bsidh
pydoc3 sibc.sidh

3. Is there a quick help for the SIBC command syntax?
Try: ’sibc –help’

4. Can I execute SIBC with my own primes?
Yes. Check SIBC documentation for the exact syntaxis that you should use for
defining arbitrary primes p in the directory: ’data/sop/’.

5. Can I use SIBC to break any speed record for isogeny-based cryptographic scheme?
While SIBC is a valuable tool for experimenting and testing new algorithmic tricks
for isogeny-based cryptography, its execution timings are rather slow. After all,
SIBC was written in Python3, which by no means produces fast executable code.
However, since SIBC accurately reports the number of required field arithmetic
operations, it is a useful testbench for assessing the performance of cryptographic
schemes.

6. I have some ideas for improving some of the computations perform by SIBC, how
can I test them and contribute with my improvements?
To test your algorithmic tricks, just install SIBC with the option: ’sudo pip3 install
-e .’. Additionally, you are more than welcome to directly contact any of the authors
mentioned in the Acknowledgment section of this document for further feedback
and collaboration.

4.2 Vélu and square root Vélu

0. Is it accurate that the asymptotic cost of
√
élu is Õ(

√
`) as claimed by [6]?

Yes. Using variants of the FFT multiplication along with Schönage’s method for
polynomial multiplication, the asymptotic cost of

√
élu is indeed Õ(

√
`).

1. But then why is better in practice to use Karatsuba polynomial multplication for
computing

√
élu is Õ(

√
`)?

Due to the hidden constants in the Schönage-FFT polynomial multiplication, Karat-
suba is a more economical approach for polynomials of degree less than ≈ 300.
Notice that it is always possible to combine these two approaches.

2. What is the expected impact of
√
élu for SIDH or SIKE?

None.

3. What is the expected impact of
√
élu for CSIDH?

In [4], the authors report significant accelerations for CSIDH-512 CSIDH-1024 using√
élu. In [2], the authors report significant accelerations for CSIDH-1792 using√
élu.
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4. Where can I find a concrete cost analysis for
√
élu?

Check [2].

5. What is the expected impact of
√
élu for B-SIDH?

Huge. Arguably, B-SIDH is the big winner among all the isogeny-based protocols

6. What would be the most attractive projects on
√
élu related topics from an algo-

rithmic point of view?

• To tune-up the sets I, J and K of KPS to hopefully obtained a reduced cost
on
√
élu

• To study more efficient ways to perform the [scaled] remainder tree associated
to the computation of the resultants (See [5])

• To study other polynomial multiplication methods (such as Toom-Cook)

4.3 Isogeny based protocols

0. I noticed that SIBC does not currently support any isogeny-based digital signature
scheme: why is that so?
Testing and implementing some of the proposed isogeny-based digital signature
schemes in SIBC is part of our future work, and is definitely of our interest to
develop these extensions for our library.

1. What is B-SIKE?
B-SIDH can naturally be extended to include a key encapsulation mechanism anal-
ogous to the extension of SIDH that was named SIKE. In SIBC we use the name
’B-SIKE’ for the combination of B-SIDH plus a key encapsulation mechanism based
on the Fujisaki-Okamoto transform.

2. Can I implement radical isogenies using SIBC?
Yes. SIBC was used in [11] for testing the performance of several radical isogenies
variants.

3. Can I implement the Verifiable Delay function of [19] using SIBC?
No. SIBC does not currently supports bilinear pairing computations, which are
required in the construction of [19].

4. Is B-SIKE faster than SIKE?
Only for some primes in Alice side. For details check out [2].
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5 Exercises

We suggest the programming exercises listed below. Please notice that they are ordered
by difficulty (we think): from easiest to hardest.

0. Provide large primes with a bitlength greater than two thousand bits for imple-
menting large instances of CSIDH (See [10] for an explanation of why this project
is worth the try)

1. Use SIBC to accurately estimate the computational cost of a parallel implementa-
tion of

√
élu.

2. Use SIBC to accurately estimate the computational cost of a parallel implementa-
tion of B-SIDH and CSIDH using

√
élu and hvelu (as defined in the library).

3. Modify SIBC to compute
√
élu using Toom-Cook instead of Karatsuba.

4. Modify SIBC to implement CTIDH [4].

5. Modify SIBC to implement the Verifiable Delay function of [19].

6. Modify SIBC to implement any isogeny-based digital signature scheme of your
choice
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