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Today / Class 1:
The basic geometry and arithmetic of hyperelliptic curves and their Jacobians.

Genus 2 is an important special case, but it helps to see the broader context.

Tomorrow / Class 2:

- Cryptographic aspects
- First steps in genus-2 isogeny-based cryptography



Recall...



Perfect ground fields

We work over a perfect field k. This means

- Every irreducible polynomial over k has distinct roots in k

- Equivalently: Either char(k) = 0, or char(k) = p and the Frobenius o+ a” is
an automorphism.

Examples:

1. Finite fields: k = Fq (what we're really interested in)

2. Characteristic 0: k = Q, Q(v/13), Q(t), Qp, R, C, ...

3. ..Butnot (e.g) k = Fqy(t)
(Because xP — t is irreducible, but has one multiplicity-p root t'/P over Fq(t)).
Also, a — aP is not an automorphism of Fy(t): there is no preimage of t.)



Fields of definition

A thing (a point, a set, a curve, a function) is defined over k if it is fixed by
Gal(k/k).

Example: the set {14+ +v—1,1—+/—=1} C Q(v/—1) is defined over Q.

If k = Fq, then Gal(k/k) is (topologically) generated by the g-power Frobenius, so
the objects defined over F, are those fixed by/commuting with Frobenius.

If X is a thing, then X(k) denotes its elements/points defined over k.



Hyperelliptic Curves



From elliptic to hyperelliptic curves

So far, we've considered cryptosystems built from elliptic curves and their
isogenies.

But what's so special about elliptic curves?
More generally: we could try working with any algebraic curve X over k.
- X =P'=aline
- X = an elliptic curve £ : y2 = x> + Ax+ B
« X1 y? = f(x) with degf > 4 (hyperelliptic curves)
- ..More generally, a plane curve X : F(x,y) = 0 in A2

Questions: What kinds of groups do you get? What are the analogues of
isogenies?



Hyperelliptic Curves

Hyperelliptic curves:
with f squarefree, of degree d > 4.
(NB: d =1,2 = conics; d = 3,4 = elliptic curves.)

Hyperelliptic involution:

v (X, y) — (X, —y).
Key fact: P — x(P) defines a double cover X — X /(i) = P'.
Point(s) at infinity:

odd d = one point oo at infinity.
even d — two points coy, co_ at infinity.



The function field

If X : F(x,y) = 0 is a plane curve over k, then its function field is

k(X) =k()W1/(F(x,Y)) -
Elements: rational fractions in x and y, modulo the curve equation F(x,y) = 0.

For more general, non-plane curves, k(X) := fraction field of the coordinate ring.



Divisors



Zeroes and Poles

Rational functions on X have poles and zeroes:

zeroes of f are the points P on X where f(P) = 0.

poles of f are the points P on X where f(P) = occ.

Note: (zeroes and poles can occur with multiplicity > 1.)

Theorem: If fis a nonzero function in k(X), then

1. f has only finitely many zeroes and poles, and
2. counted with multiplicity, # zeroes(f) = # poles(f).



Orders of vanishing

The order of vanishing of a nonzero function f at a point P of X is

n if f has a zero of multiplicity n at P
ordp(f) := < —n if f has a pole of multiplicity n at P

0 otherwise

Useful rules:

- ordp(fg) = ordp(f) + ordp(g) for all f, g, P

- ordp(f/g) = ordp(f) — ordp(g) for all f, g, P

- ordp(a) = 0 for all constants a # 0 in k

- ordp(Y; aixdiyPi) = n if the plane curve 3 aix%yP = 0 intersects X with

multiplicity n at P



Principal divisors

Each function f # 0 on X has an associated principal divisor

div(f)= > ordp(f)(P).

PeXx(Fq)
The sum is formal: there is no addition law on the points.

1. div(f) = 0 if and only if fis constant (in kq \ {0});

2. div(fg) = div(f) + div(g) and div(f/g) = div(f) — div(g);
3. div(f) = div(g) <= f= ag for some a # 0 in F,.
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The principal divisors form a group

Since div(fg) = div(f) + div(g), the set of principal divisors forms a group
Prin(X) := {div(f) : fe k(X)} .

Functions are determined by their principal divisors, up to constant factors.
Or, if you like exact sequences:

1— Kk — k(X)X — Prin(X) — 0.
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Consider the elliptic curve £ : y? = x3 + 1 over Fs.

oF

iv(x) = (0,1) + (0, —=1) — 20¢;
© div(y) = (=1,0) 4 (4,0) + (=3,0) — 3o0;
: le(Xz/y) - 2(0 _1) + 2(071) - (_13 O) o (47 O) - (_3’ O) —
( ) (07_1)+(273)+OO_(071)_(_370)_(470)
More generally:
If f(x,y) = 0 is the line through P and Q, then div(f) = P+ Q + (&(P & Q)) — 3cc.
(Here, © means the group law on &, and & is negation.)

a.

iv
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General divisors

Divisors on X are formal sums of points in X' (k) with arbitrary coefficients in Z.

We define a (free abelian, infinitely generated) group

Div () ;:{ 3 np(P)},

PcX(Fq)

with the np in Z, and only finitely many np # 0.
Of course, Prin(X) is a subgroup of Div(X).
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The Picard group

The group Div(X) is way too big, and tells us nothing about the geometry of X.
We work with the Picard group: the quotient

Pic(X) := Div(X)/Prin(X).
Elements are divisor classes:
[D] = {D + div(f) : fe k}.
If D and D, are in the same class, then we say they are linearly equivalent:

Dy ~ D, <= Dy = D, + div(f) for some f € k(X).



We have a degree homomorphism deg : Div(X) — Z,

deg(D> np(P)) = np.
P

P

Its kernel is a subgroup of Div(X), denoted Div®(X):
Div?(X) := kerdeg = {D € Div(X) : deg(D) = 0} C Div(X).
Every function has the same number of zeroes and poles, so
Prin(X) C Div?(X) and Prin(X)(k) € DivP(X)(k).

The inclusion is strict for almost all curves: not every degree-0 divisor is
principal!
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Why are they called divisors?

Idea: degree-0 divisors are “parts of functions”.

Example: Consider the elliptic curve &€ : y> = x> + 1. The divisors
D1=(0,1)—occ and D,=(0,-1)— o0
are both in Div®(&). Neither is principal, but
D1+ Dy = div(x).

So we can view D; and D, as being “parts” (or even “factors”) of the function x...



Degrees of divisor classes

The deg homomorphism is well-defined on divisor classes:

deg : Pic(X) — Z
[D] — deg(D)
(since deg(div(f)) = 0 for all f).

Hence, Div?(X) splits up into divisor classes: we set

Pic?(X) := ker(deg : Pic(X) — Z)
= Div?(X)/Prin(X).



Structure of the Picard group

If we fix any “base point” P on &, then the map D — (D — deg(D)oc, deg(D))
defines isomorphisms

Div(X) +— Div®(X) x Z
Pic(X) +— Pic®(X) x Z.
The “interesting” stuff all happens in Pic?(X), which has the structure of an

abelian variety: a geometric object defined by polynomial equations in projective
coordinates, with a polynomial group law.

(Stop and think about what this means for a minute: divisor classes can be
defined by tuples of coordinates, and addition of divisor classes modulo linear
equivalence defined by polynomial formulae in those coordinates!)



Differentials




Differentials on X look like gdf, where g and f are in k(X), with

g1dfy = godfy = 9 _ dh (+ usual derivative).

g1 df
Differentials

- obey the usual product rule: d(fg) = fdg + gdf;
- are k-linear: d(af + 8g) = adf + 8dg for a, 8 ink;
- and differentials of constants are zero: da = 0 for « in k.
Example: on £ : y? = x> + 1, we have
2ydy = 3x%dx

Differentials are not functions on X, but they do give linear functions on the
tangent spaces of X. They are very helpful in linearizing problems on X.



The space of differentials

The differentials on X form a one-dimensional k(&X')-vector space, Q(X).

That is: if we fix some differential dx, then every other differential in Q(&X) is
equal to fdx for some function f.

On the other hand: Q(X) is an infinite-dimensional k-vector space.
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Divisors of differentials

Differentials have divisors!

First, for each point P of X, we fix a local parameter tp near P on X: ie any
function with a simple zero at P.

If wis a differential then w/dtp is a function, so we set
ordp(w) := ordp(w/dtp)
(perhaps amazingly, ordp(w) is independent of the choice of tp) and

div(w) := Z ordp(w)(P) .

Pex
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Example on an elliptic curve

What is the divisor of dx on an elliptic curve & : y? = f(x)?

At points (a, ) where 8 # 0, we can use t(, 3) = X —

dx

ord(, 5)(dx) = Ord(a,ﬁ)(m) = ord(q,8)(1) = 0.
If 3= 0then x — «is not a local parameter at («, 0) (it has a double zero),

but we can use t(, 0y = J; hence

)=1.
F(x)
At infinity: we know ordso(X) = —2 and ordo(Y) = —3, SO we can take to = x/y:
dx | i 2yf(x)
) e Y Ry

dx
Ol’d(mo)(dX) = Ord(a’o)(?y) = ord(ayo)(

ordeo (dx) = ordeo( )=-3.
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Canonical divisors

Note that
div(fw) = div(w) + div(f) forall f € k(X),w € Q(X).

So: the divisors of differentials on X are all in the same divisor class,
which we call the canonical class, [K].

Any divisor in [K] is called a canonical divisor.

On the hyperelliptic curve H : y* = f(x) = H,L(x — aj), we have

> 1(,0) — 300 d odd
S (@, 0) — 2(cot +00_) deven

K = div(dx) = {
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Nonconstant differentials with no poles

Consider the elliptic case: if y> = f(x) = (X — a1)(x — @2)(x — a3), then
div(dx) = (a1,0) + (a2,0) + (a3,0) — 300.

Notice that div(y) = div(dx), so
ax
div(—) =0.
()

The differential dx/y is a nonconstant differential with no poles (or zeroes!).
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Regular differentials

We call differentials with no poles regular differentials.

The regular differentials on X form a (finite-dimensional) k-vector space
Q'(X) = {w € QX) : wis regular}.

The genus of X is defined to be the dimension of Q'(X).

Think: the genus gives a first classification of the intrinsic algebraic complexity of
a curve.
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Genus of hyperelliptic curves

For hyperelliptic curves

L(d 1)/2 ”

SO
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Explicit regular differentials

More generally, if X' /k is a nonsingular plane curve of genus g defined by
X :F(x,y)=0,

then its regular differentials are

. g=1
1 - X!
)= <(aF/ay)(x,y) dX>,_ |

Fact: for any curve X, we have deg(K) = 2g — 2.
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Riemann-Roch




Into space!

Let's get back to functions on X.

Evaluating a single function at points maps us from X to P!
(the poles of the function map to o).

Evaluating a tuple (f1,...,fy) of functions gives us a map
P (fi(P):---:fn(P):1) €P".

We want to control behaviour at infinity, hence the poles of the f;.
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Riemann-Roch Spaces

A divisor D =", npP is effective if all of the np > 0. We define
L(D) := {f € k(&) : D + div(f) is effective } U {0}.

.50 L(D) consists of the functions whose poles are contained in D.
L(D1+ Dy) D L(D1)L(Dy) for any effective D4, D, .

Note: if X = P!, then L(doo) = {polynomials of degree < d}.
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Dimension of Riemann-Roch Spaces

Fact: L(D) is a finite-dimensional k-vector space. What is its dimension?

- If deg D < 0, then D + div(f) can never be effective
= dimL(D) = 0 when deg D < 0.

- L(0) = k (functions with no poles are constant),
— dimL(0) = 1.
- More generally, L(D) =7
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The Riemann-Roch Theorem

The Riemann-Roch theorem tells us that for any D,

dim L(D) — dim L(K — D) = degD — g +1.
Recall that K is (any) canonical divisor, and

L(K—D) +— {we Q' (X):w=00nD}.

In particular, for “large enough” D, we have L(K— D) = 0 and hence
dimL(D) =degD — g+ 1.
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Weierstrass models of elliptic curves

Suppose £ is an abstract elliptic curve over k, and let O € £(k).

We have K= 0, so Riemann-Roch gives dim L(D) = deg D for effective D.

L(O) =k = (1) (constants)
- dimL(20) =2 = L(20) = (1,x) for some x
- dimL(30) =3 = L(30) = (1,x,y) for some y
L(40) = (1,x,%°,y)
L(50) = (1,X,X%,y,XY)

L(60) = (1,x,x%,%3,y, Xy, y?), but dim L(60) = 6, so there must be a nontrivial
linear relation between the 7 functions 1, x, x2, X3, y, Xy, y°.

— Weierstrass equation y? 4+ aixy + azy = agx® + axx? + asx + .

L(30) gives us an embedding & — P? = P(L(30)) defined by P+ (x(P) : y(P) : 1)
and O — oco=(0:1:0). k)



Application: canonical models for genus 2 curves

Suppose X is a curve of genus 2.

- We have degK=2g —2 =2,50 L(—nK) =0 forn > 1.

- Apply R-Rto D =0 = dim L(K) = 2, so L(K) = (1,x) for some x.

- Apply R-Rto D = nK, n > 1: dim L(nK) = 2n — 1 for n > 1.

* L(2K) 2 (1,x,x%) but dim L(2K) = 3, so L(2K) = (1,x,x?).

- L(3K) 2 (1,x,x%,x%) but dim L(3K) = 5, so L(3K) = (1,x,x%,x*,y) for some new y
< LL(AK) = (%%, 3, Xy, xy)

©LL(5K) = (1,%,%2, 3, X4, X2, v, Xy, X2Y)
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...Every genus 2 curve is hyperelliptic

Now L(6K) 2 (1,x,x%,x3,x*, X, X, y, xy, x*y, X3y, y), but R-R says dim L(6K) = 11,
so there is a nontrivial k-linear relation between the 12 functions:

3 6
YA+ (aky)=> bix'  with the a;, b; € k.
i=0 i=0
char(k) # 2: replace y with y — 1577 Jax to gety? = 30 fix'.

Now P — (x(P),y(P)) defines a map from X into the plane; its image is the
hyperelliptic curve

6
Xy =fl)=> fix.
i=0
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Hyperelliptic Jacobians




Hyperelliptic Jacobians

Suppose X : y? = f(x) is hyperelliptic of genus g > 1.

From now on, we suppose f has odd degree,
so X has a single point co at infinity.

Even degree case is (only) slightly more complicated.

Goal: to define a compact (and algebraic) representation for Pic?(X).
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Reduced representatives for classes

If [D] is in Pic®(X), then [D] has a unique reduced representative:
[D] =[P1+4 -+ Pr—roq]
for some Py,...,P, € X depending on [D] (not D) such that

* Pj # oo and P; # «(P;) for i # j (semi-reducedness)
- r < g (reducedness)

[D] € Pic®(X)(k) <= P;+ ---+ P, € Div(X)(k)
Note: the individual P; need not be in X (k)!
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Riemann—-Roch guarantees the existence of the reduced representative.

If [D] is in Pic®(X), then applying Riemann-Roch to D + goo yields a function f
such that D + goo + div(f) = D' is effective; so [D' — goo] = [D] with deg D' = g.

D' — goo is almost a reduced representative:
it remains to remove any P + ¢(P) — 200 = div(x — x(P)) from D'.
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The Mumford representation

Suppose we have a class [D] in Pic®(X)(k) with reduced representative
D=Pi+4 -+ Pr—roo € Div2(X) (k) .

The Mumford representation of [D] is the (unique) pair of polynomials (a(x), b(x))
in k[x] such that

- a(x) = [Tz (x = x(P;)), and
© b(x(Py)) =y(P) for1<i<r,

for each of the x-coordinates appearing as a root of @, evaluating b gives the
corresponding y-coordinate.

If necessary, compute b by Lagrange interpolation.
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The Mumford representation

If (a(x), b(x)) represents a class on X : y? = f(x), then
1. ais monic of degree r < g, and

2. b satisfies degb < r and b? = f (mod a).

Theorem: Any pair (a(x), b(x)) in k[x]? satisfying these conditions represents a
divisor class in Pic?(x)(k).

— identify divisor classes with Mumford reps of their reduced representatives:
we simply write [D] = (a, b).

We associate (a(x), b(x)) with the ideal (a(x),y — b(x)).
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Hyperelliptic Jacobians

We can collect the Mumford representations by degree 0 < d < g:
My = {(a,b) : deg(b) < deg(a) = d,b> =f (mod a)} .

We can view the coefficients of a(x) = x? + ag_x3~" + - -- + aix + ao and
b(x) = bg_1x9~" + - + b as coordinates on A%,

b? (mod a) and f (mod a) are polynomials of degree d — 1 in k[a;, bi][X];

the vanishing of their coefficients defines d independent equations in the 2d
coordinates, cutting out Mg as a d-dimensional subvariety in A29,

- Mg is a point;
- My is an affine copy of X;
- #My(Fq) = 0(g9) foro < d < g.
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The Jacobian

Glueing together Mo, ..., Mg, we give Pic®(X) the structure of a g-dimensional
algebraic variety Jy, called the Jacobian.

Over Fy, we have #Jx = 0(q9) (more precision later).

We want an expression of the group law on Jy in terms of its coordinates;
Cantor's algorithm does this using an explicit form of Riemann-Roch.
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Cantor’s algorithm: addition on Jx

Input: Reduced divisors Dy = (ay, by) and D; = (a,, by) on X. : Step 1: d(X(P/)) =0 |ff Pj - L(Qj)
Output: A reduced D3 = (a3, b3) st. [D3] = [D; + D;] in Pic®(x). for some }
1. (d,ur, up, u3) == XGCD(ay, az, by + by)
/] sod = ged(aq, az, by + by) = uga1 + Upay + u3(by + by).

- Steps 2, 3: sum Dy and D, remove

2. Seta; := aj0,/d% . .
3. Setby = by + (nas(bs — br) + us(F — B2))/d (mod az); contribution of d
4 Ifdega; < gthengotoStep; — pre-reduced D5 such that
5. Setds := a3 and by := bs;
6. Setas == (f— bd)/ay; [D3] = [Dy + D3]
7. Let(Q, bs) = Quotrem(—bs, d3); - Loop: reduces degree of the
8. Whiledegas > g . .
8a Sett:= G + Q(bs — Ba) representative until reduced.
8b Setb; :=bs, 83 = a3, and a; ;= t; . .
8c Let (0, by) := Quotrem(—bs, as); - Exercise: how many steps until the

9. Return (a3, b3).

result is reduced?
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Embeddings of Jacobians

The Mumford representation lets us compute with a hyperelliptic Jacobian by
dividing it up into affine pieces:

Jx =MoUMU---UMg .

In fact, Jx is projective (it's an abelian variety)
—so what are its projective embeddings?
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