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Computing degree-{ isogenies using Vélu's formulas

@ Since July 1971, Vélu's formulae have been used to construct and evaluate
degree-¢ isogenies in the vast majority of isogeny-based cryptographic
primitives.

@ Traditional Vélu's formulae have a combined computational expense of
about 6/ field operations to construct and evaluate degree-¢ isogenies.

@ Recently, Bernstein, de Feo, Leroux and Smith presented in ANTS'2020
[BFLS ANTS'20], a new approach for computing degree-/ isogenies at a
reduced cost of just O(v/¢) field operations.
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Computing degree-{ isogenies using Vélu's formulas

@ Nevertheless, the authors of [BFLS ANTS'20] left open several intriguing
research lines such as,

» The concrete computational and memory cost of the novel Vélu
formulae

» The concrete impact of the V/élu formulae on constant-time
implementations of relevant isogeny-based protocols
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Computing degree-/ isogenies using Vélu's formulas

A Constant of
domain curve

z(P) of order-¢
point P

A’ Constant of
co-domain curve E

2(¢(Q)), image of
point Q over E’

@ For decades now, Vélu's formulae have been widely used to construct and

evaluate degree-¢ isogenies, using three main blocks,

» KPS [Sort of a pre-computation building block. Cost: ~ (3/)M]

» xIS0G [Finds the image curve. Cost: ~ (¢{)M]
» xEVAL [Evaluate a point. Cost: ~ (2()M]
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Vélu's formulae for computing KPS and xEVAL

@ Montgomery curves can be used to efficiently compute isogenies using
Vélu's formulas. Suppose we want the image of a point @ under an
(-isogeny ¢, where { = 2k + 1.
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Vélu's formulae for computing KPS and xEVAL

@ Montgomery curves can be used to efficiently compute isogenies using
Vélu's formulas. Suppose we want the image of a point @ under an
l-isogeny ¢, where { = 2k + 1.

@ KPS: Foreach 1 < i< kwelet (X;:Z) = x([/|P), where (P) = ker(¢).
Cost: = 3/.
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Vélu's formulae for computing KPS and xEVAL

@ Montgomery curves can be used to efficiently compute isogenies using
Vélu's formulas. Suppose we want the image of a point @ under an
l-isogeny ¢, where { = 2k + 1.

@ KPS: Foreach 1 < i< kwelet (X;: Z;) = x([/]P), where (P) = ker(¢).
Cost: =~ 3.

@ xEVAL: One can compute (X' : Z') = x(¢(Q)) from (Xq : Zg) = x(Q) as,

e :Xp( [(Xo —ZQ)(Xi+Zi)+(ZQ+ZQ)(Xi_Zi)])2

—- 1=~

7' = Zo(T[ [(Xe - Zo)(Xi + Z) ~ (Za + Za)X% ~ 2)])°

i=1

Cost: ~ 2/.
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Vélu's formulae for computing KPS and xEVAL

@ Montgomery curves can be used to efficiently compute isogenies using
Vélu's formulas. Suppose we want the image of a point @ under an
l-isogeny ¢, where { = 2k + 1.

@ KPS: Foreach 1 << kwelet (X;:Z)=x([/]P), where (P) = ker(¢).
Cost: ~ 3/.
@ xEVAL: One can compute (X' : Z’') = x(4(Q)) from (Xg : Zg) = x(Q) as,
2
X' = xp(T] [(Xe = Za)(Xi + Z) + (Za + Za)(Xi - Z0)])

[(Xo — Z0)(X + 2) ~ (Zo + Z0)(X; — 2)])

- 13-

7' = zp(
i=1

Cost: ~ 2/.
@ xIS0G: Omitted.
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The new Vélu
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Computing degree-{ isogenies using Vélu's formulas

@ Recently, Bernstein, de Feo, Leroux and Smith presented in ANTS'2020 a
new approach for computing degree-/ isogenies at a reduced cost of just
O(V/¥) field operations.

@ This improvement was obtained by observing that the polynomial product
embedded in the isogeny computations could be speedup via a baby-step
giant-step method
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Computing elliptic resultants [Outline]

@ Given E4/F, an order-£ point P € Ea(Fy), and some value o € F; we want
to efficiently evaluate the polynomial,

-1

hs(a) = [ [(a = x([11P)).

i
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Computing elliptic resultants [Outline]

@ Given E4/F, an order-/ point P € Ex(F,), and some value o € Fy we want
to efficiently evaluate the polynomial,

£—1

hs(a) = [J(a = x([11P)).

i

@ From Lemma 4.3 of [BFLS ANTS'20],

F(x(P).x(Q)) , , F(x(P).x(Q))

(X —x(P+ Q)X —x(P—Q)) = X+ Fo(x(P).x(Q))" " Fo(x(P), x(Q))

where,

Fo(Z,X) = Z% — 2XZ + X?;
F1(Z,X) = —2(XZ% + (X% 4+ 2AX +1)Z + X);
Fo(Z, X) = X?Z? —2XZ + 1.
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Computing elliptic resultants [Outline]

@ This suggests a rearrangement a la Baby-step Giant-step as,

= [T II(c—x(i+s-j1P)(a—x([i — s - IP))

i€ETjeg

@ Now h(a) can be efficiently computed by calculating the resultants of
polynomials of the form,

h < [](Z = x)) € Fql2Z]

x; €L
Ej(e) < ] (Fo(Z.x)0® + Fi(Z, x)a + Fa(Z, x;)) € Fg[Z]
x €T
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Our implementation of Vélu

@ The most demanding operations of Vélu require computing four different
resultants of the form Resz(f(Z), g(Z)) of two polynomials f, g € Fy[Z].
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Our implementation of Vélu

@ The most demanding operations of Vélu require computing four different
resultants of the form Resz(f(Z), g(Z)) of two polynomials f, g € Fy[Z].

@ Those four resultants are computed using a remainder tree approach
supported by carefully tailored Karatsuba polynomial multiplications

Francisco Rodriguez-Henriquez On new Vélu's formulae (9/31)


https://eprint.iacr.org/2020/1109

Our implementation of Vélu

@ The most demanding operations of Vélu require computing four different
resultants of the form Resz(f(Z), g(Z)) of two polynomials f, g € Fy[Z].

@ Those four resultants are computed using a remainder tree approach
supported by carefully tailored Karatsuba polynomial multiplications

@ In practice, the computational cost of computing degree-¢ isogenies using
Vélu, is close to K(\/Z)'°323 field operations, with K a constant.
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Our implementation of Vélu

@ The most demanding operations of Vélu require computing four different
resultants of the form Resz(f(Z), g(Z)) of two polynomials f, g € Fy[Z].

@ Those four resultants are computed using a remainder tree approach
supported by carefully tailored Karatsuba polynomial multiplications

@ In practice, the computational cost of computing degree-¢ isogenies using
Vélu, is close to K(\/Z)'°g23 field operations, with K a constant.

e Veéluis easily parallelizable. A two-core implementation can compute the
four resultants in parallel, yielding an expected extra saving of around 35%.
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Our implementation of Vélu

@ The most demanding operations of Vélu require computing four different
resultants of the form Resz(f(Z), g(Z)) of two polynomials f, g € Fy[Z].

@ Those four resultants are computed using a remainder tree approach
supported by carefully tailored Karatsuba polynomial multiplications

@ In practice, the computational cost of computing degree-¢ isogenies using
Vélu, is close to K(\/Z)'°g23 field operations, with K a constant.

e Veéluis easily parallelizable. A two-core implementation can compute the
four resultants in parallel, yielding an expected extra saving of around 35%.

@ Full details are available at: https://eprint.iacr.org/2020/1109.
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Computing degree-{ isogenies using Vélu's formulas: KPS

Algorithm 1 KPS: Baby-step Giant-step method

Input: An elliptic curve Eq/Fy : y? = x3 + Ax? + x; P € Ex(Fq) of odd prime order £.
Output: Z = {x([i]P) | i € I}, T = {x([j]P) | j € J}, and K = {x([k]P) | k € K} such that
(1,J) is an index system for S, and K = S\(/ + J)

b+ |Ve—1/2|; b’ + (¢ —1)/4b]

I+ {2b(2i+1)|0<i< b}

J+—{2j+1]|0<j< b}

K<+ S\(I£J)

I+ {x([i]P)|iel}

J —{x(UIP)1j€ J}

K+ {x([K]P) | k € K}

return 7,7, /C

ONOO R WN =

@ Time cost: ~ 3b Point Additions = 18bM

@ Memory cost: < 8b Field elements.
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Computing degree-{ isogenies using Vélu: xIS0G

Algorithm 2 Computing xIS0G

Input: An elliptic curve E5/Fq : y? = x3 + Ax? + x; P € Ex(Fq) of odd prime order ¢; Z, 7, K
from KPS.

Output: A’ € Fy such that Ey /Fy : y? = x3 4 A’x? 4 x is the image curve of a separable isogeny

with kernel (P).

h [T ez(Z — xi)) € Fql2]

Eoy Hx,-eJ (Fo(Z,Xj) + F1(Z, %) + FQ(Z,XJ')) € Fq[Z]

Ery [yes (Fo(Z,%) = Fu(Z, %) + Fa(Z, x7)) € FqlZ]

Ry « Resz(h,, EO,J) S ]Fq

Rl < ReSz(h/, El,J) c Fq

M0<_kaeIC( Xk)GIFq

My kaelc( 1—x4) €Fq

- (53)" ()’

return 2 (Hd

© ©® Nook WD

@ Time cost: ~ (36b'°%2% + 4blog, b + 19b + 3log, b+ 16) /2M
@ Memory cost: < 3blog, b field elements.[shared with xEVAL]
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Computing degree-{ isogenies using Vélu: xEVAL

Algorithm 3 Computing xEVAL

Input: An elliptic curve E5/Fq : y?> = x3 + Ax? + x; P € Ex(Fq) of odd prime order /; the
x-coordinate a # 0 of a point Q € Ea(Fq)\(P); Z, J, K from KPS.

Output: The x-coordinate of ¢(Q), where ¢ is a separable isogeny with kernel (P).
1 by I1,ez(Z - x)) € FolZ]

Eo s [Tyeq (Fo(Z,x)/0? + Fi(Z, ) /a + Fa(Z, x7)) € FqlZ]

Ery < [yes (Fo(Z,x)0? + Fi(Z, x5)o + F2(Z, x})) € Fq[Z]

Ry < Resz(h,, EO’J) S Fq

Ry + ReSZ(h/, E1,J) S Fq

My + kaelc(l/o‘ —xx) € Fq

My Tl ex(a—x) € Fq

return (MoRo)? /(M1 Ry)?

O NOoGRA WD

o Time cost: ~ (36b'°%2% + 4blog, b+ 19b + 3log, b+ 16) /2M
® Memory cost: < 3blog, b field elements.[shared with xIS0G]
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Improving the computation of Vélu

Q@ For Steps 2-3 of xEVAL: Compute Ep ; and from it, obtain directly £ 4

© For xEVAL: Compute Ey j by expressing
(Fo(Z,x))2> + Fi(Z, x;)xz + F2(Z, x;)x?) as a quadratic polynomial
aZ? + bZ + c. This formulation saves 3 field multiplications per polynomial
Eoj, 0 <j < #J as compared with a more direct approach.

@ For multi-core environments: compute the two resultants of xEVAL and the
two resultants of xIS0G in parallel
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Cost model for computlng degree-/ i |sogen|es using Vélu
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This approximation is a lower bound
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Karatsuba Vs. Schonage-FFT polynomial multiplication

@ Is it accurate that the asymptotic cost of Vélu is O(v/?) as claimed by
[BFLS ANTS'20]?
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Karatsuba Vs. Schonage-FFT polynomial multiplication

@ Is it accurate that the asymptotic cost of Vélu is O(v/) as claimed by
[BFLS ANTS'20]?
Yes. Using variants of the FFT multiplication along with Schonage’s method
for polynomial multiplication, the asymptotic cost of Vélu is indeed O(v/7).
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Karatsuba Vs. Schonage-FFT polynomial multiplication

@ But then why is better in practice to use Karatsuba polynomial multplication
for computing Vélu is O(v/7)?
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Karatsuba Vs. Schonage-FFT polynomial multiplication

@ But then why is better in practice to use Karatsuba polynomial multplication
for computing Vélu is O(v/7)?
Due to the hidden constants in the Schonage-FFT polynomial multiplication,
Karatsuba is a more economical approach for polynomials of degree less than
~ 300. Notice that it is always possible to combine these two approaches.
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Karatsuba Vs. Schonage-FFT polynomial multiplication

@ But then why is better in practice to use Karatsuba polynomial multplication
for computing Vélu is O(V/1)?
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50000 - 1
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30000 - b

Field multiplications

20000

10000 - b
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Constant-time Vélu

@ No branches with secret conditions.
@ V/élu is a multiplicative-inverse-free procedure
@ The three procedures KPS, xIS0G and xEVAL are completely deterministic.

@ The size of the sets Z, 7 and K as defined in KPS, are a function of the
[public] parameter Z.

@ All the polynomial coefficients involved in the Vélu computation are
different than zero. Hence, independently of the order-¢ point P, the cost of
the primitives KPS, xIS0OG and xEVAL is always the same.

@ The remainder tree, which is at the heart of the two resultant computations,
takes the same cost for either xISOG or xEVAL.

@ We have ran a few number of examples changing the point P, and the
computational costs of KPS, xISOG and xEVAL, remain the same.
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Vélu memory cost

@ Memory analysis for Vélu [direct approach at a computational cost of & 6/]:

» KPS requires to compute and store £ — 1 field elements.

@ Memory analysis for Vélu:
> Less than 4b points, equivalent to 8b field elements, are computed and

stored in KPS.
» The computation of the trees determined by the polynomial h; in Step
1 of xISOG and xEVAL, requires the storage of no more than 3blog, b

field elements.
» Hence, Vélu's memory cost is of about 8b + 3blog, b field elements.

Conclusion: For any odd degree-/, Vélu always requires less memory storage
than traditional Vélu's formulae.
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Two isogeny-based protocols
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Vélu impact on isogeny-based protocols

@ What is the expected impact of V/élu for SIDH or SIKE?
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Vélu impact on isogeny-based protocols

@ What is the expected impact of V/élu for SIDH or SIKE?
None
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Vélu impact on isogeny-based protocols

@ What is the expected impact of Vélu for CSIDH?
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Vélu impact on isogeny-based protocols

@ What is the expected impact of Vélu for CSIDH?
Promising. As of yet, we have only seen a moderate acceleration for the
CSIDH-512 and CSIDH-1024 instantiations, but for CSIDH-1792 the savings
are impressive.
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Vélu impact on isogeny-based protocols

@ What is the expected impact of v/élu for B-SIDH?
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Vélu impact on isogeny-based protocols

@ What is the expected impact of v/élu for B-SIDH?
Huge. B-SIDH is the big winner among the isogeny-based protocols

Francisco Rodriguez-Henriquez On new V/élu's formulae (19 / 31)



Overviewing the CSIDH
[Castryck-Lange-Martindale-Panny-Renes Asiacrypt'18|

Public parameter:

E/F,: By* = 2% + Az? + z,

Alice Bob

(e1,... en) & [-m .. m]" (Froees o) & [=m..m]"

EA:[il*"'*[i"*E*-)EB=[{1*~-~*[£"*E'
eE/B

EBAZI?*"'*[Z"*EB EABI[{1*~~~*[£"*EA

Figure: CSIDH key-exchange protocol

CSIDH works over a finite field IF,, where p is a prime of the form

p::41£[€,-—1
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Overviewing the CSIDH
[Castryck-Lange-Martindale-Panny-Renes Asiacrypt'18|

(€1, ren) & [~m ..m]"

Ex=1{"%--xlxE

Ega=1{'%-- %% Ep

(p+1)/4=3-5.-7-11-13-
107 - 109 - 113 - 127 -
227229 - 233 - 239 -
349 - 353 - 350 - 367 -

Francisco Rodriguez-Henriquez

Public parameter:
E/F,: By? = 23 + A2® + z,

Alice Bob

«E/

Figure: CSIDH key-exchange protocol

17-19-23-29-31-37-41-43-47-53-59-61-67-71
131 - 137 - 139 - 149 - 151 - 157 - 163 - 167 - 173 - 179 - 181
241 - 251 - 257 - 263 - 269 - 271 - 277 - 281 - 283 - 293 - 307
373 - 587

*EB:[{I*“.

EAB:[{‘*w-

(Firoosfn) & -m..m]"

U+ E

*If;t * Ey

-73-79-83-89-97-101-103-
-191 - 193 - 197 - 199 - 211 - 223
-311-313 - 317 - 331 - 337 - 347
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Playing the B-SIDH [Costello Asiacrypt'20]

Public parameter:

E/F,2: By? = 2® + Az® + z,
P,,Q, € E[p+1] of order M, and Py, Qp € E[p — 1] of order N

Alice

ske & [0.. M —1]

Ra = Pa + [Ska]Qa

ba: B — E/(Ra)
E, = E/<Ra>

Eop = Ep/{¢6(Ra))

w
By, 6(Pa), &4(Qu

Bob

sky & [0.. N 1]
Ry = Py + [sks| Qs

op: E — E/(Ryp)
By = E/(Ry)

Eab = Ea/<¢a(Rb)>

Figure: B-SIDH protocol for a prime p such that M|(p + 1) and N|(p — 1).

Alice and Bob work in the (p 4+ 1)- and (p — 1)-torsion of a set of supersingular
curves defined over [F,» and the set of their quadratic twist, respectively.

Francisco Rodriguez-Henriquez

On new Vélu's formulae (21 / 31)



Playing the B-SIDH [Costello Asiacrypt'20]

Public parameter:
E/F,2: By? = a3+ Aa® + x,
P,,Qq € E[p+1] of order M, and P,,Q, € E[p — 1] of order N

ke £10.. M —1] sky &[0 N —1]
Rq = Py + [ska]Qa
bu: B = Ef(R,)
Eq = E/(Ra)

Ry = Py + [sky)Qp
Op: B — E/(Ry)
Ey = E/(Rs)

Eq, 6a(Ps), $a(Q)
By, én(Pa), du(Q.

Figure: B-SIDH protocol for a prime p such that M|(p + 1) and N|(p — 1).

Eap = Ey/($0(Ra)) Eap = Ea/{¢a(Rs))

Prime example: B-SIDHp237:

p = 0x1B40F93CE52A207249237A4FF37425A7T98E914A74949FA343ESEA48TFFFF

M=43% (4.3".17.19.31.37.53%)°,
N =7-13-43.73 103260 - 439 - 881 - 883 - 1321 - 5479 - 9181 -
12541 - 15803 - 20161 - 24043 - 34843 - 48437 - 62753 - 72577.
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Playing the B-SIDH [Costello Asiacrypt'20]

Public parameter:
E/[F,2: By? = a® + Aa? + z,
P,.Qq € E[p+1] of order M, and P,,Q, € E[p — 1] of order N

ko &[0, M—1] sky £ 0. N 1]
R, = Py + [5ka|Qa
¢t E — E/(Ra)
Eq, = E/(Ra)

Ry, = Py + [sky) Qs
Sy E— E/(Ry)
Ey = B/(Ry)

Eo, $a(Ps), $a(Qb)
By, ¢4(Pa), $5(Qa

Eap = Ep/(d(Ra)) Eap = Ea/{¢a(Rs))

Figure: B-SIDH protocol for a prime p such that M|(p+ 1) and N|(p — 1).

Prime example: B-SIDHp253:

p = 0x1935BECE108DC6COAADO712181BB1A414E6A8AAA6B510FC29826190FE7EDASOF,

M =42.3.7%.179.318.311.571 - 1321 - 5119 - 6011 - 14207 - 28477 - 76667,
N =11%.19.233.47.79.83-89 - 151 - 3347 - 17449 - 33461 - 51193.
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Experiments and efficiency
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Number of base field operations for constant-time

Configuration | Group action evaluation | M | S | a || Cost | Saving (%)
OAYT-style 0.641 | 0.172 | 0.610 0.813

tvelu MCR-style 0.835 | 0.231 | 0.785 1.066 —
dummy-free 1.246 | 0.323 | 1.161 1.569

OAYT-style 0.656 | 0.178 | 0.988 0.834 —2.583

svelu MCR-style 0.852 | 0.219 | 1.295 1.071 —0.469

dummy-free 1.257 | 0.324 | 1.888 1.581 —0.765

OAYT-style 0.624 | 0.165 | 0.893 0.789 2.952

hvelu MCR-style 0.805 | 0.204 | 1.164 1.009 5.347

dummy-free 1.198 | 0.301 1.696 1.499 4.461

Table: Number of field operation for the constant-time CSIDH-512 group action
evaluation. Counts are given in millions of operations, averaged over 1024
random experiments. For computing the Cost column, it is assumed that M = S
and all addition counts are ignored. Last column labeled Saving corresponds to

(1 __Cos

baseline

t
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) x 100 and baseline equals to tvelu configuration.
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Number of base field operations for constant-time

Configuration | Group action evaluation | M | S | a || Cost | Saving (%)
OAYT-style 0.630 | 0.152 | 0.576 0.782

tvelu MCR-style 0.775 | 0.190 | 0.695 0.965 —
dummy-free 1.152 | 0.259 | 1.012 1.411

OAYT-style 0.566 | 0.138 | 0.963 0.704 9.974

svelu MCR-style 0.702 | 0.152 | 1.191 0.854 11.503

dummy-free 1.046 | 0.230 | 1.746 1.276 9.568

OAYT-style 0.552 | 0.133 | 0.924 0.685 12.404

hvelu MCR-style 0.687 | 0.146 | 1.148 0.833 13.679

dummy-free 1.027 | 0.221 1.679 1.248 11.552

Table: Number of field operation for the constant-time CSIDH-1024 group action

evaluation. Counts are given in millions of operations, averaged over 1024

random experiments. For computing the Cost column, it is assumed that M = S
and all addition counts are ignored. Last column labeled Saving corresponds to

baseline

(1 __Cost

Francisco Rodriguez-Henriquez

) x 100 and baseline equals to tvelu configuration.
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Number of base field operations for constant-time

CSIDH-1792
Configuration | Group action evaluation | M | S | a | Cost | Saving (%)
OAYT-style 1.385 | 0.263 | 1.137 || 1.648
tvelu MCR-style 1.041 | 0.239 | 0.911 || 1.280 —
dummy-free 1.557 | 0.327 | 1.336 || 1.884
OAYT-style 1.063 | 0.187 | 2.073 || 1.250 24.150
svelu MCR-style 0.807 | 0.154 | 1.550 || 0.961 24.922
dummy-free 1.233 | 0.247 | 2.314 || 1.480 21.444
OAYT-style 1.060 | 0.185 | 2.061 || 1.245 24.454
hvelu MCR-style 0.797 | 0.151 | 1.522 || 0.948 25.938
dummy-free 1.220 | 0.241 | 2.272 || 1.461 22.452

Table: Number of field operation for the constant-time CSIDH-1792 group action

evaluation. Counts are given in millions of operations, averaged over 1024

random experiments. For computing the Cost column, it is assumed that M = S
and all addition counts are ignored. Last column labeled Saving corresponds to

Cost
(1 " baseline

Francisco Rodriguez-Henriquez

) x 100 and baseline equals to tvelu configuration.
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Number of base field operations for the secret sharing

phase of BSIDH

Configuration Alice’s side Bob’s side
M ] a [ Saving (%) M ] a | Saving (%)
B-SIDHp253 1.831 | 3.936 1.529 3.277
B-SIDHp255 1.931 | 4.127 1.305 2.795
tvelu | B-SIDHp247 0.434 | 0.928 — 1.113 2.372 —
B-SIDHp237 || 0.053 | 0.115 4872 | 10.377
B-SIDHp257 || 1.963 | 4.190 0.156 0.336
B-SIDHp253 0.462 | 1.741 74.768 0.390 1.517 74.493
B-SIDHp255 0.505 | 1.943 73.847 0.362 1.338 72.261
Vélu | B-SIDHp247 || 0.203 | 0.653 53.226 |[ 0.449 1.541 59.659
B-SIDHp237 0.053 | 0.115 00.000 1.183 4.585 75.718
B-SIDHp257 || 0.555 | 2.077 71.727 |[ 0.108 0.306 30.769

Table: Number of base field operations for the secret sharing phase of BSIDH. Counts are

baseline

given in millions of operations. Columns labeled Saving correspond to (1 — Cost ) x 100 and

baseline equals to tvelu configuration.
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Skylake Clock cycle timings for several key exchange

isogeny-based protocols

Implementation | Protocol Instantiation || Mcycles

SIKE [NIST alternative candidate] ‘ SIKEp434 I 22
Castryck et al. [Original CSIDH] CSIDH-512 unprotected || 4 x 155
Bernstein et al. [Original \/élu] CCSﬁIIIDDI-||—|—_1501224uunnp;$teeC;:e:d j i ;2(3)
Cervantes-Vazquez et al. [LC'19 CSIDH imp] | CSIDH-512 [[ 4 x238
Chi-Dominguez et al. [CSIDH with strategies] | CSIDH-512 [[ 4 x 230
Hutchinson et al. [CSIDH with strategies] | CSIDH-512 [[ 4 %229
CSIDH-512 4 x 223

This work (estimated) B-SIDH-p253 119

Table: Skylake Clock cycle timings for a key exchange protocol for different
instantiations of the SIDH, CSIDH, and B-SIDH protocols.
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Open problems

@ What would be the most attractive projects on Vélu related topics for an
algorithmic oriented fellow?
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Open problems

@ What would be the most attractive projects on Vélu related topics for an
algorithmic oriented fellow?

» To tune-up the sets Z, J and K of KPS to hopefully obtained a
reduced cost on Vélu

» To study more efficient ways to perform the [scaled] remainder tree
associated to the computation of the resultants (See Bernstein's “Fast
multiplications and its applications™)

» To study other polynomial multiplication methods (such as
Toom-Cook)
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Open problems

@ What would be the most attractive projects on Vélu related topics for a
programming oriented fellow?
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Open problems

@ What would be the most attractive projects on Vélu related topics for a
programming oriented fellow?

» A C-code highly optimized implementation of B-SIDH and/or CSIDH
using Vélu

» A multi-core implementation of B-SIDH and/or CSIDH using V/élu

» A hardware-software co-design implementation of B-SIDH and/or
CSIDH using Vélu
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How to compute the resultants using the Schonage-FFT
polynomial multiplication

@ Let A be commutative ring where 2 invertible. For n > 1 a power of 2, ¢ a
square in A and ¢ € A a square of —1, let f, g be two polynomials in
Alx]/(x" + ¢).

@ To multiply f and g, one can split the problem into two smaller ones by
reducing f, g to f_,g_ € Alx]/(x"/? — ¢c*/?) and to
frogr € A/(x2 + (Mg,

@ Then, the products f_g_, f g, are computed, and subsequently embedded
into A[x]/(x" + ¢) wherein (f_g_ + frg4) and (f_g_ — f1gy) are calculated
to finally recover 2fg.

@ Note that when c is an nth root in A, which in addition contains an nth root
of —1, then the above procedure can be applied recursively to compute the
product nfg at a cost of k multiplications in A and %nlogQ(n) easy
multiplications in A by constants.
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