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These short lecture notes aims at giving an overview on the framework of orienting supersingular elliptic
curves, that is exploiting the use of embeddings of imaginary quadratic orders into endomorphism rings of
supersingular Elliptic curves. They try to provide all the information necessary to understand the general
ideas behind the key exchage protocol OSIDH. Further detail could be found in [CK].

1 Basic Definitions

Definition. A K-orientation on a supersingular elliptic curve E/k is a homomorphism ι : K ↪→ End0(E).
An O-orientation on E is a K-orientation such that the image of the restriction of ι to O is contained in
End(E). We write End((E, ι)) for the order End(E)∩ι(K) in ι(K). An O-orientation is primitive if ι induces
an isomorphism of O with End((E, ι)).

Remark. The supersingular isogeny path problem takes place in a geometric category of supersingular
elliptic curves. In the equivalent category of left ideals for a quaternion order, primitive orientations are
usually referred to as optimal embeddings and they have been introduced by Eichler [Eic] (also see [Voi, Ch.
30-31]).

Remark. Orientations (and optimal embeddings) can be used to p-adically lift supersingular elliptic E curves,
that is, construct an elliptic curve over (an extension of) Qp whose reduction modulo p is exactly E. This
process brings us in the characteristic 0 realm meaning that the p-adic lifting of a supersingular curve is not
supersingular anymore. For more detail one could refer to [Bel].

Remark. (Primitive) Orientations are in bijection with the (primitive) representations of the discriminant
of O by normic ternary quadratic form associated associated to the endomorphism ring of the elliptic curve
(See [AB], [Mil]).

Example. The elliptic curve E0 over Fp with j-invariant 0 is supersingular for p ≡ 2 mod 3. In these cases,
its endomorphism ring its known to be isomorphic to the maximal quaternion order

End(E0) ' Z+ Z
[
1 + i

2

]
+ Z [j ] + Z

[
3 + i + 3j + k

6

]
⊆ Ap,∞

where i2 = −3, j2 = −p and Ap,∞ is the quaternion algebra ramified at p and ∞.
We know that E0 admits an endomorphism of degree 3 (we could check that it is a root of Φ3(X,X),

the classical modular polynomial of degree 3) given by ρ : (x, y)→ (ζ3x, y) for a primitive cube root of unity
ζ3.

We can show that there is a unique optimal embedding OK = Z[ω] ↪→ O where OK is the ring of integers
of the number field K = Q(

√
−3) of discriminant −3. (Exercise?) and this is given by w → (1+i)/2 resulting

in a unique primitive orientation w → ρ.

Let φ : E → F be an isogeny of degree `. A K-orientation ι : K ↪→ End0(E) determines a K-orientation
φ∗(ι) : K ↪→ End0(F ) on F , defined by

φ∗(ι)(α) =
1

`
φ ◦ ι(α) ◦ φ̂.
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Conversely, given K-oriented elliptic curves (E, ιE) and (F, ιF ) we say that an isogeny φ : E → F is
K-oriented if φ∗(ιE) = ιF , i.e. if the orientation on F is induced by φ.

If E admits a primitive O-orientation by an order O in K, φ : E → F is an isogeny then F admits an
induced primitive O′-orientation for an order O′ satisfying

Z+ `O ⊆ O′ and Z+ `O′ ⊆ O.

We say that an isogeny φ : E → F is an O-oriented isogeny if O = O′.

Remark. Orientations permits one to recover some terminology usually associated with CM elliptic curves
(see [Koh]);

• O = O′ and we say that φ is horizontal,

• O ⊂ O′ with index ` and we say that φ is ascending,

• O′ ⊂ O with index ` and we say that φ is descending.

Definition. We define an `-isogeny chain of length n from E0 to E to be a sequence of isogenies of degree
`:

E0
φ0−−−−−→ E1

φ1−−−−−→ E2
φ2−−−−−→ . . .

φn−1−−−−−−→ En = E.

We say that the `-isogeny chain is without backtracking if ker(φi+1◦φi) 6= Ei [`] for each i = 0, . . . , n−1, and
say that the isogeny chain is descending (or ascending, or horizontal) if each φi is descending (or ascending,
or horizontal, respectively).

Remark. The orientation by an imaginary quadratic number field K differentiates vertices in the descending
paths from a starting elliptic curve, determining an infinite graph.

2 Class Group Action

Suppose that (Ei , φi) is an `-isogeny chain, with E0 equipped with an OK-orientation ι0 : OK → End(E0).
For each i , let ιi : K → End0(Ei) be the induced K-orientation on Ei , and we note Oi = End(Ei) ∩ ιi(K)
with O0 = OK . In particular, if (Ei , φi) is a descending `-chain, then ιi induces an isomorphism

ιi : Z+ `iOK −→ Oi .

Let q be a prime different from p and ` that splits in OK , let q be a fixed prime over q. For each i we
set q(i) = ιi(q) ∩ Oi , and define

Ci = Ei [q(i)] = {P ∈ Ei [q] | ψ(P ) = 0 for all ψ ∈ q(i)}.

We define Fi = Ei/Ci , and let ψi : Ei → Fi , an isogeny of degree q. By construction, it follows that
φi(Ci) = Ci+1 for all i = 0, . . . , n − 1. In particular, if (Ei , φi) is a descending `-ladder, then ιi induces an
isomorphism

ιi : Z+ `iOK −→ Oi .

The isogeny ψ0 : E0 → F0 = E/C0 gives the following diagram of isogenies:

E0 E1 E2 En

F0

ψ0

φ0 φ1 φ2 φn−1

and for each i = 0, . . . , n − 1 there exists a unique φ′i : Fi → Fi+1 with kernel ψi(ker(φi)) such that the
following diagram commutes:

Ci ⊆ Ei Ei+1 ⊇ Ci+1

Fi Fi+1

φi

ψi ψi+1
φ′i
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The isogenies ψi : Ei → Fi induce orientations ι′i : O′i → End(Fi). This construction motivates the following
definition.

Definition. An `-ladder of length n and degree q is a commutative diagram of `-isogeny chains (Ei , φi) and
(Fi , φ

′
i) of length n connected by q-isogenies (ψi : Ei → Fi):

E0 E1 E2 En

F0 F1 F2 Fn

φ0 φ1 φ2 φn−1

φ′0 φ′1 φ′2 φ′n−1

ψ0 ψ1 ψ2 ψn

We also refer to an `-ladder of degree q as a q-isogeny of `-isogeny chains, which we express as ψ : (Ei , φi)→
(Fi , φ

′
i).

We say that an `-ladder is ascending (or descending, or horizontal) if the `-isogeny chain (Ei , φi) is
ascending (or descending, or horizontal, respectively). We say that the `-ladder is level if ψ0 is a horizontal
q-isogeny. If the `-ladder is descending (or ascending), then we refer to the length of the ladder as its depth
(or, respectively, as its height).

We introduce the following notation:

• SS(p) =
{
Supersingular elliptic curves over F̄p up to isomorphism

}
• SSO(p) =

{
O-oriented supersingular elliptic curves over F̄p up to K-isomorphism

}
• SSprO (p) =

{
Primitive O-oriented upersingular elliptic curves over F̄p up to isomorphism

}
Integral O-ideals act on SSprO (p) via

j(E) −→ [a] · j(E) = j(E/E[a])

where, as usual, the group E[a] consists of all the points annihilated by all the endomorphisms in a ↪→ End(E).
Since principal ideals act trivially, this action factors through the class group

C̀ (O)× SSO(p) SSO(p)

([a] , E) [a] · E = E/E[a]

Theorem 2.1. The class group C̀ (O) acts faithfully and transitively on the set of O-isomorphism classes of
primitive O-oriented elliptic curves.

3 Modular approach

We recall that the modular curve X(1) ∼= P1 classifies elliptic curves up to isomorphism, and the function j
generates its function field. The family of elliptic curves

E : y2 + xy = x3 −
36

(j − 1728)x −
1

(j − 1728)

covers all isomorphism classes j 6= 0, 123 or∞, such that the fiber over j0 ∈ k is an elliptic curve of j-invariant
j0. The curves y2 + y = x3 and y2 = x3 + x deal with the cases j = 0 and j = 1728.

The modular polynomial Φm(X, Y ) defines a correspondence in X(1)×X(1) such that Φm(j(E), j(E′)) =
0 if and only if there exists a cyclic m-isogeny φ from E to E′, possibly over some extension field.

Definition. A modular `-isogeny chain of length n over k is a finite sequence (j0, j1, . . . , jn) in k such that
Φ`(ji , ji+1) = 0 for 0 ≤ i < n. A modular `-ladder of length n and degree q over k is a pair of modular
`-isogeny chains

(j0, j1, . . . , jn) and (j ′0, j
′
1, . . . , j

′
n),

such that Φq(ji , j ′i ) = 0.
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Given any modular `-isogeny chain (ji), elliptic curve E0 with j(E0) = j0, and isogeny ψ0 : E0 → F0, it
follows that we can construct an `-ladder ψ : (Ei , φi) → (Fi , φ′i) and hence a modular `-isogeny ladder. In
fact the `-ladder can be efficiently constructed recursively from the modular `-isogeny chain (j0, . . . , jn) and
(j ′0, . . . , j

′
n), by solving the system of equations

Φ`(j
′
i , Y ) = Φq(ji+1, Y ) = 0,

for Y = j ′i+1.

4 OSIDH Protocol
In this framework, we could try to construct a key-exchange cryptographic protocol. Suppose we fix an
elliptic curve E0/k (k = Fp2) which is primitively oriented by OK , the ring of integers of a class number one
imaginary quadratic field K. We construct a descending `-isogeny chain (in the infinite oriented volcano)
E0 → E1 → . . .→ En. The orientation on E0 yields an orientation on Ei by an order of conductor `i :

ιi : Z+ `iOK → Oi ⊂ End(Ei),

and we set O = On. By hypothesis on E0/k (the class number of OK is 1), any horizontal isogeny
ψ0 : E0 → F0 is, up to isomorphism F0 ∼= E0, an endomorphism.

For a set of small primes q1, . . . , qt splitting in OK , both parties choose exponents (e1, . . . , et) and push
forward a qe11 · . . . · q

et
t -endomorphism φ0 ∈ End(E0), to an isogeny ψ : (Ei , φi)→ (Fi , φ′i).

E0

E1

E2

En

φ0

φ1

φ2

φn91

OK

F0

F1

F2

Fn

φ′
0

φ′
1

φ′
2

φ′
n91

ψ0

ψ1

ψ2

ψn

At this point the idea is to exchange curves Fn (final Alice’s curve) and Gn (final Bob’s curve) and to
apply the same process again starting from the elliptic curve received from the other party. Unfortunately,
this is not enough to get to the same final elliptic curve. Once Alice receives the unoriented curve Gn
computed by Bob she also needs additional information for each prime qi , namely which directions - out of
qi + 1 total qi -isogenies - to take as qi and q̄i (the two primes above qi in Oi).

Exercises

Exercise 1. Show that, for an odd prime p ≡ 2 mod 3 there exists a unique primitive orientation (up to
conjugation) of E(j = 0) by OK , the ring of integers of K = Q(

√
−3).

What happens for p = 2?
Exercise 2. Verify the commutativity of the squares in a ladder: let G1 and G2 be two subgroups of E and
suppose φi : E → Fi = E/Gi . Check that F1/φ1(G2) = F2/φ2(G1).
Exercise 3. Class group action. We fix p = 10007, ` = 2 and ∆K = −3.

• Describe the class group Oi = Z+ `iOK .
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• Compute the class number of Oi = Z+ `iOK .

• Construct the oriented volcano up to depth 5.

• For q = 7, 13, 19 compute the class group action of the two primes above them on one of the elliptic
curves at level 4 (oriented by O4).

Exercise 4. Class group. We characterize the initialization phase of ladder construction (= construction
q-isogenies of `-isogeny chains). The initialization step is problematic at 2-torsion elements of C̀ (Oi) as
such elements are primes whose square is a principal ideal, that is, the action of q and q̄ is the same.

• Work out the two torsion part of C̀ (Oi) for ∆K = −3 and ` = 2 and give a rough estimate on the
number of steps to be done in order to differentiate the action of all the primes above q < 1024.

Remark. This could be done using both the notation of ideals and that of quadratic forms, since we
have a correspondence

O D a = (α, β) −→
Nm(αx + βy)

Nm(a)
= 〈a, b, c〉

O D a = (a,
−b +

√
∆

2
)←− 〈a, b, c〉

• What are the problematic primes p ∈ Z, i.e., primes that split in ideals lying in the 2-torsion subgroup?

Exercise 5. Modular approach. A square of isogenies in a ladder can be represented by a point on the
modular curve X0(`q). This, together with the 2 maps X0(`q)→ X0(`) (one is obtained from the other by
composing with the Atkin Lehner involution) and the two maps X0(`q)→ X0(q) (once again conjugated by
Atkin-Lehner involution) give full description of the 4 isogenies determining the sides of the square.

Constructing a ladder consist in completing the right and bottom side of a square (determining the bottom
right corner). One could hope to pre-construct a rational function F (j0, j1, j ′0) representing the image of
X0(`q) in the product X0(`)×X0(`)×X0(q) such that, evaluated in the triple (j(Ei), j(Ei+1), j(Fi)), gives
the j-invariant completing the ladder.

• Suppose p = 2689. Prove that elliptic curves over Fp2 can be oriented by K = Q(
√
−19).

• We will fix ` = 3 and q = 7. Construct the parameters t` and tq for the modular curves X0(`) and
X0(q) in terms of the Dedekind η-function (see [Mcm2] for some more details) as well as the maps
X0(`)→ X(1) and X0(q)→ X(1) (One could refer to [Mcm1] for some explicit choices).

• Compute the correspondence X0(`q) → X0(`) × X0(`) by comparing the q expansions of t3(q) and
t3(q

7) (see the Appendix for some precomputations).

Remark. This is the analogous of the classical modular polynomial of degree 7 with some Γ0(3) level
structure. Although, one could notice that the size of the coefficients is much smaller.

• Consider the isogeny 375ω+1883→ 332ω+1282 and compute the 8 squares for which it is the top
map.

• Construct the modular correspondence X0(`q)→ X0(`)×X0(`)×X0(q) and complete the ladder

2634 359ω + 800 375ω + 1883 332ω + 1282 1521ω + 334 1720ω + 2265

2634 469ω + 268 2526ω + 2057

here ω is a root of x2 + x + 5.

Remark. Notice that a choice has been made at the second step where the two 7-isogenies differen-
tiate.
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Remark. For very small prime p this procedure might not work. The reason is that the map SSO(p)→
SS(p) becomes quite rapidly non-surjective meaning that the same j-invariant appears multiple times
in the same level or in two adjacent levels. This is problematic when doing examples but it is marginal
in real cryptographic applications where p is usually big.

• One could repeat the exercise working with `2 instead of `, i.e., adding Γ0(9) level structure. This
means consider rectangles where the top and bottom sides are chains of 3 isogenies of length 3 and
the vertical maps represent 7-isogenies between them. A nice feature of this is that the size of the
modular polynomials tends to get smaller when we go up in the modular tower.

Exercise 6. Division polynomials: We fix q = p2 = 100072. Observe that p ≡ 2 mod 3 which tells us that
the elliptic curve E0 of j-invariant 0 is supersingular. We consider the embedding Z[ω] ↪→ End(E0) where
ω2 − ω + 1 = 0. Consider the 2-isogeny chain

E0 → E1 → E2 → E3 → E4 → E5

where j(E0) = 0, j(E1) = 3965, j(E2) = 7778, j(E3) = 8545, j(E4) = 377 + 1623ω, and j(E5) =

2602 + 656ω. On E0 we have a 7-isogeny given by the action of 2(1 − ω) − 1. Construct its kernel
polynomial and push it through the given isogeny chain.
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Appendix
> PS<q> := LaurentSeriesRing(QQ);
> f3 := DedekindEta(PS,[<1,12>,<3,-12>],200);
> f7:=DedekindEta(PS,[<1,4>,<7,-4>],200);
> f9 := DedekindEta(PS,[<1,3>,<9,-3>],200);
> f37 := Evaluate(f3,q^7 + O(q^200));
> f97 := Evaluate(f9,q^7 + O(q^200));
> B:=AlgebraicRelations([f3,f37],[8,8]);
> P<X,Y> := Universe(B);
> B;

[
X^8 - X^7*Y^7 - 84*X^7*Y^6 - 2646*X^7*Y^5 - 38332*X^7*Y^4 - 249501*X^7*Y^3 - 589680*X^7*Y^2
- 254996*X^7*Y - 84*X^6*Y^7 + 76482*X^6*Y^6 + 3324664*X^6*Y^5 - 59876628*X^6*Y^4
- 2305419732*X^6*Y^3 + 5415347854*X^6*Y^2 - 429876720*X^6*Y - 2646*X^5*Y^7 + 3324664*X^5*Y^6
- 1467398205*X^5*Y^5 - 45085572*X^5*Y^4 - 698263874840*X^5*Y^3 - 1680650984628*X^5*Y^2
- 132595060941*X^5*Y - 38332*X^4*Y^7 - 59876628*X^4*Y^6 - 45085572*X^4*Y^5
+ 3625600210414*X^4*Y^4 - 32867381988*X^4*Y^3 - 31820895060948*X^4*Y^2 - 14850602184348*X^4*Y
- 249501*X^3*Y^7 - 2305419732*X^3*Y^6 - 698263874840*X^3*Y^5 - 32867381988*X^3*Y^4
- 779835569463405*X^3*Y^3 + 1288042952640696*X^3*Y^2 - 747308553528726*X^3*Y
- 589680*X^2*Y^7 + 5415347854*X^2*Y^6 - 1680650984628*X^2*Y^5 - 31820895060948*X^2*Y^4
+ 1288042952640696*X^2*Y^3 + 21600775809139842*X^2*Y^2 - 17294855095950516*X^2*Y
- 254996*X*Y^7 - 429876720*X*Y^6 - 132595060941*X*Y^5 - 14850602184348*X*Y^4
- 747308553528726*X*Y^3 - 17294855095950516*X*Y^2 - 150094635296999121*X*Y + Y^8
]

> AlgebraicRelations([f9,f97],[8,8]);

[
X^8 - X^7*Y^7 - 21*X^7*Y^6 - 189*X^7*Y^5 - 910*X^7*Y^4 - 2415*X^7*Y^3 - 3213*X^7*Y^2
- 1547*X^7*Y - 21*X^6*Y^7 - 441*X^6*Y^6 - 4193*X^6*Y^5 - 22470*X^6*Y^4 - 70875*X^6*Y^3 -
121877*X^6*Y^2 - 86751*X^6*Y - 189*X^5*Y^7 - 4193*X^5*Y^6 - 43785*X^5*Y^5 - 262710*X^5*Y^4
- 946379*X^5*Y^3 - 1913625*X^5*Y^2 - 1760535*X^5*Y - 910*X^4*Y^7 - 22470*X^4*Y^6 -
262710*X^4*Y^5 - 1757630*X^4*Y^4 - 7093170*X^4*Y^3 - 16380630*X^4*Y^2 - 17911530*X^4*Y
- 2415*X^3*Y^7 - 70875*X^3*Y^6 - 946379*X^3*Y^5 - 7093170*X^3*Y^4 - 31919265*X^3*Y^3 -
82530819*X^3*Y^2 - 100442349*X^3*Y - 3213*X^2*Y^7 - 121877*X^2*Y^6 - 1913625*X^2*Y^5
- 16380630*X^2*Y^4 - 82530819*X^2*Y^3 - 234365481*X^2*Y^2 - 301327047*X^2*Y - 1547*X*Y^7
- 86751*X*Y^6 - 1760535*X*Y^5 - 17911530*X*Y^4 - 100442349*X*Y^3 - 301327047*X*Y^2
- 387420489*X*Y + Y^8
]

> C:=AlgebraicRelations([f3,f7,f37],[4,5,1]);
> P<X,Y,Z>:=Universe(C);
> C[4];

X^4*Y^3*Z - 10808/142185*X^4*Y^3 + 409346/28437*X^4*Y^2*Z + 157829/47395*X^4*Y^2
+ 8417906/142185*X^4*Y*Z - 10982174/47395*X^4*Y - 412477394/142185*X^4
+ 206215137/202708415*X^3*Y^5 + 10761264509/405416830*X^3*Y^4*Z
- 3185404308/202708415*X^3*Y^4 - 143739504193/173750070*X^3*Y^3*Z
+ 3777859611/11583338*X^3*Y^3 - 335576313359/57916690*X^3*Y^2*Z
+ 183804248439/57916690*X^3*Y^2 + 425441848006/5791669*X^3*Y*Z
+ 67929410677527/57916690*X^3*Y + 16835336602/28437*X^3*Z
+ 66289712821038/5791669*X^3 - 11166681339/405416830*X^2*Y^5*Z
- 8930061332037/81083366*X^2*Y^4*Z - 8117865083142/40541683*X^2*Y^4
- 250177208371983/57916690*X^2*Y^3*Z - 521545410239013/28958345*X^2*Y^3
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- 327329959362210/5791669*X^2*Y^2*Z - 12426596976215583/28958345*X^2*Y^2
- 9113611103561853/28958345*X^2*Y*Z - 124454881180005327/28958345*X^2*Y
- 3730332029345271/5791669*X^2*Z - 482147712509876217/28958345*X^2
+ 22536219856257/202708415*X*Y^5*Z - 400200100425117/405416830*X*Y^4*Z
- 3945282430407012/202708415*X*Y^4 - 1867348135853793/57916690*X*Y^3*Z
- 14687557924511007/57916690*X*Y^3 - 13310935795806327/57916690*X*Y^2*Z
+ 8523296326054251/57916690*X*Y^2 - 14563587862879524/28958345*X*Y*Z
+ 191970035808768441/11583338*X*Y - 4181256894541608/28958345*X*Z
- 254011356343402686/28958345*X + 1789968614624487/405416830*Y^5*Z
+ 767519611709931/31185910*Y^4*Z - 79891969215741993/202708415*Y^4
+ 156588438217599/4455130*Y^3*Z + 84993591563161524/28958345*Y^3
+ 105793984316286/28958345*Y^2*Z
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