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1 Introduction

In this lecture note we will examine the algorithmic problem of defining a group
action on the SIDH key space and applying Kuperberg’s hidden shift algorithm
to retrieve the secret isogeny in overstretched SIDH variants [4]. We suppose
the reader is familiar with the SIDH key exchange and basic results concerning
supersingular elliptic curves.

In [1] the authors show how one can reduce finding the secret isogeny in
CSIDH to a hidden shift problem involving the class group acting on the sets
of supersingular elliptic curves over Fp. This action has some very special prop-
erties. It is free and transitive which implies a direct one-to-one correspondence
between supersingular elliptic curves over Fp and elements of the class group of
Z[
√
p]. If one considers the whole supersingular isogeny graph, then there are

many different class group actions which do not commute as in the Fp case.
Thus, it is not obvious how one could generalize the attack from [1] to the SIDH
setting. The main idea of the result in this note is to use a completely different
group action and exploit the torsion point information provided in SIDH.

First we introduce a generic framework called a ”malleability oracle” which
provides a wide variety of situations where hidden shift attacks could be appli-
cable (even potentially outside of isogeny-based cryptography). Then we provide
an instantiation of the malleability oracle in the SIDH setting.

2 Malleability oracles

First let us briefly recall some important algorithmic problems which are inter-
esting from a quantum standpoint.

Problem 2.1 (Hidden shift problem). Let G be a group and let X be a set. Let
f1, f2 : G → X be functions which can be evaluated on any g ∈ G efficiently.
Suppose that there exists an x ∈ G such that f1(gx) = f2(g). Find x.

Kuperberg showed that the hidden shift problem can be solved in subex-
ponential time if G is abelian and f1, f2 are injective [3]. The main idea of
Kuperberg’s algorithm is a reduction to a different problem which is called the
the hidden subgroup problem:

Problem 2.2. Let G be a group and let X be a set. Let f : G→ X be a function
which is constant along the cosets of some subgroup H. Find H
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Remark 2.3. In the special case where f is a group homomorphism, the hidden
subgroup problem is equivalent to finding the kernel of the homomorphism.

The hidden subgroup problem is a central problem in algebraic quantum
algorithms. When G is abelian, then there exists a polynomial-time algorithm
which finds the hidden subgroup. This is of particular interest for cryptographers
as this is the celebrated algorithm of Peter Shor which can be applied to factoring
and discrete logarithms [5]. When G is non-abelian, then the picture is much
less clear. Nevertheless, when G is the dihedral group, then the hidden subgroup
problem can be solved in subexponential time. It is not hard to show that the
hidden shift problem for an abelian group can be reduced to a dihedral hidden
subgroup problem.

Exercise 2.4. Suppose you have access to an oracle for solving the hidden sub-
group problem for the dihedral group Dn (which has 2n elements). Let f1, f2 be
injective functions from Z/nZ to some set X with the property that f1(g+x) =
f2(x) for some x ∈ G and every g ∈ G. Find x with the help of he oracle.

(Hint: use the fact that Dn is a semidirect product of a cyclic group of order
n and a cyclic group of order 2.)

Now we turn our attention to the concept of malleability oracles. We recall
some basic definitions concerning group actions first:

Definition 2.5. Let G be a group acting on a set X. The group action is tran-
sitive if for every pair x, y ∈ X there exists a g ∈ G such that gx = y. The group
action is free if gx = x implies g = 1.

Remark 2.6. One can also rephrase these notions in terms of stabilizers and
orbits. The transitivitiy condition means that there is exactly one orbit. A group
action is free if and only every elements stabilizer is trivial. If both conditions are
satisfied, then there is a bijection between the group elements and the elements
of X.

Definition 2.7. Let f : X → Y be an injective one-way function. Let G be a
group which acts on the set X. Then the input of a malleability oracle is a value
f(x) and an element g ∈ G. The output is f(gx).

Now the question is the following. Suppose we have access to a malleability
oracle. How hard is it to invert f? The next lemmas shows that if G is abelian
and the action of G is free and transitive, then one can invert f in subexponential
time:

Lemma 2.8. Let f : X → Y be an injective (one-way) function and let G be a
group acting transitively on I. Given a malleability oracle for G at o := f(i), a
preimage of o can be computed by solving a hidden shift problem.

Proof. Take an element j ∈ X and define the functions fj(g) : g 7→ f(gj) and
fi(g) : g 7→ f(gi). Note that we can evaluate both functions efficiently (the first
one is clear, the second one is an implication of the malleability oracle). We show
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that these two functions are shifts of each other. Since G acts transitively on X,
there exists an s such that sj = i. Then one has that

fi(g) = f(gi) = f(gsj) = fj(gs).

From this it is clear that finding the hidden shift s is sufficient to find i.

Lemma 2.9. Suppose that the action of G is free and transitive and that G is
finite abelian. Then there exists a subexponential algoithm that inverts f .

Proof. We leave this as an exercise (Hint: you need to show that the functions
fi and fj are injective).

Exercise 2.10. Let G,H be finite cyclic groups. Let f : G → H be such that
f(x + y) = f(x) + f(y) (i.e., f is a homomorphism). Show that one can invert
f in quantum polynomial time. (Hint: reduce the problem to a discrete log
instance)

It is not suprising that the attack from [1] against CSIDH fits into the mal-
leability oracle framework. In the next section are goal is to show how one can
construct a malleability oracle for overstretched SIDH (i.e., where the isogeny
degrees involved are significantly larger than p).

3 Applications to overtretched SIDH

3.1 The group action

Suppose that φ : E → EA is a secret isogeny of degree A and one is provided
with the images of PB , QB generating E[B] under the isogeny φ. Our goal is to
use mallebaility oracles for retrieving the secret isogeny from this information. In
order to define a malleability oracle we need to define an injective function first.
The natural candidate is to choose the function which takes a cyclic subgroup H
of order A of E to the elliptic curve E/H. The one-wayness of this function is at
the core of isogeny-based cryptography. However, this function is not necessarily
injective. Suppose that E has a cyclic endomorphism of degree A2. Then if one
takes the first A part of this endomorphism then this curve is the image of two
different cyclic subgroups under the above mentioned function. In order to handle
this issue we take the special starting curve E : y2 = x3 + x. Now a different
issue arises. Namely, that E contains a non-scalar automorphism ι which implies
that E/H ∼= E/ι(H). The question arises: can we give a useful characterization
when E/H1

∼= E/H2? In order to achieve this we impose two conditions on A.
We assume that A is a power of 2 and that A2 < p+1

4 . Then one can show the
following:

Exercise 3.1. Suppose that A2 < p+1
4 . Let φ and φ′ be two isogenies of degree

A from E to a curve EA. Then either kerφ = kerφ′ or kerφ = ι(kerφ′). (Hint:
show that the only endomorphisms of degree A2 of E are A and Aι)
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On one hand, this shows that the natural choice for a one-way function is
not injective. However, this also shows that it is quite close to being injective.
Namely let P ∈ E be such that P, ι(P ) = Q generate E[A] and take the following
two subsets of cyclic subgroups of order A:

I1 = {〈P + αQ〉| α ≡ 0 (mod 2)}, I2 = {〈P + αQ〉| α ≡ 1 (mod 2)}

Exercise 3.2. Show that if we restrict the one-way function sending a cyclic
subgroup to the corresponding elliptic curve to I1 or I2, then it becomes injective.

Exercise 3.3. Let EA be a curve of distance A from E (i.e., there exists a degree
A cyclic isogeny from E to EA). Then there exists an isogeny ψ from E to EA

such that the kernel of ψ is generated by P + αQ for some α ∈ Z.

Now we have created two injective one-way functions with domains I1 and
I2. Note that our eventual goal is to invert these one-way functions but we do
not apriori know whether our secret kernel belongs to I1 or I2 (the previous
exercise shows that it does belong to at least one of them). However, this can
be dealt with by running the inversion algorithm twice (potentially in parallel):
once for I1 and once for I2. One of the algorithms will fail and the other one will
succeed (failure can be detected in subexponential time).

Our next goal is to provide a group action on I1 and I2. We need a group
action with very specific properties: the group has to be finite abelian and the
action has to be free and transitive.

As a start one can look at the endomorphism ring of E which we denote by
O = End(E). This is an abelian group with respect to addition but that’s not
very useful in this context. Instead one can look at (O/AO)∗ which is essentially
looking at endomorphisms modulo A and only taking the ones whose degree is
coprime to A. Note that in our case A is a power of 2, therefore we look at
endomorphisms whose degree is odd. This is a group isomorphic to GL2(Z/AZ).
The action of this group on a cyclic subgroup is quite natural: let θ be an
endomorphism in O and X be a point of order A. Then θ ∗ X := θ(X). Since
the degree of θ was coprime to A, the order θ(X) will be A.

There are various concerns with this group action as neither the group is
abelian nor is the induced action free. The key idea is to restrict this group
action substantially.

The first observation is that instead of working with GL2(Z/AZ), one should
be working with PGL2(Z/AZ), meaning that we identify two endomorphisms
if they differ by scalar multiplication modulo A. Then we restrict to endomor-
phisms of the form a + bι which already form an abelian subgroup. Finally,
we need that I1 and I2 are invariant under this action, so the group we use is
G = {a+ bι| b ≡ 0 (mod 2)} viewed as a subgroup of PGL2(Z/AZ).

Exercise 3.4. Show that the action of G is free and transitive on I1.

Unfortunately, the action of G on I2 is not transitive.
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Exercise 3.5. Show that the action of G has two orbits on I2.

This is actually a small technical issue which can be dealt with by slightly
modifying the acting group G. Essentially one needs a group which has half the
number of elements and acts freely and transitively on both orbits. Note that
one cannot use G as the induced action won’t be free since G has more elements
than the cardinality of the orbits.

For the rest of the note we restrict ourselves to the set I1 for simplicity. Now
we have an injective one-way function from I1 to the set of elliptic curves of
distance A from E. We also have a group action on I1 which is abelian, free and
transitive. In order to be able to use our malleability oracle framework we need
to solve the following issue.

Given E/X (but not the kernel X), how do we compute E/θ(X)?

3.2 The main idea and the lifting problem

The key idea for computing E/θ(X) comes from the diagram presented in Fig-
ure 1: Let the kernel of the secret isogeny ϕ be generated by X. Now the idea is

E EA

E E/θ(kerϕ) ∼= EA/ϕ(ker θ)

ϕ

θ

Fig. 1. SIDH key exchange instance with isogenies ϕ and the endomorphism θ.

to use the isomorphism E/θ(X) ∼= EA/ϕ(ker θ). Note that we know how ϕ acts
on E[B] so if the degree of θ divided B, then one could compute EA/ϕ(ker θ)
using the torsion information. Observe that since we are working with endomor-
phisms modulo A an element in the acting group G has several lifts in O. Now
the key problem remains to lift an endomorphisms of the form θ = a+ bι to an
endomorphism θ′ in O with the following properties:

– θ − θ′ is identically to the zero map on E[A], i.e. θ and θ′ are the same
modulo A

– deg(θ′) divides B

A similar lifting problem is considered in the KLPT algorithm [2] but in
that case an element of the form aι + bj is lifted, where j is the Frobenius
endomorphism.

Exercise 3.6. Suppose that B > pA4. Then every element of the form aι + bj
can be lifted to an element of norm dividing B. Show that every θ = a+ bι can
be written as the product of two elements of the form aι+ bj and derive a lifting
condition from this.
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There is a better way of lifting elements of the form θ = a + bι which is
described in Algorithm 1 (this is taken directly from [4], for more details on the
correctness we refer to said paper).

Algorithm 1: Lift element from Z[i] to quaternion of norm B or eB

Input: θ = a0 + b0i ∈ End(E), q := Disc(Z[i]) and parameters p, ε, A,
B > p2A4

Output: θ′ = λa0 +Aa1 + (λb0 +Ab1)i+Ac1j +Ad1k and Norm(θ′) = B or
eB with probability 1− ε and ⊥ otherwise

1 Let h(x, y) := Norm(x+ yi);
2 if λ in B = λ2h(a0, b0) (mod A) has solution for λ then
3 Compute λ;

4 else
5 e← smallest quadratic non-residue (mod A);
6 Compute λ in eB = λ2h(a0, b0) (mod A);

7 Compute linear relation between a1 and b1 mod A, say ebb1 = eaa1 + ec
(mod A) for some integers ea, eb, ec, using

2λ(a0a1 + b0b1) =
eB − h(λa0, λb0)

A
(mod A);

8 C ← 2 log(ε) log(|q|p2A4)/ log(1− log−1(|q|p2A4));
9 for m = 0, 1, . . . , C do

10 Substitute b1 using expression ebb1 = eaa1 + ec +mA in

eB = h( λa0 +Aa1 , λb0 +Ab1 ) (mod p);

11 if solution for a1 (mod p) exists then
12 Compute a1 and b1 modulo p and lift them to integers in [−p/2, p/2];

13 r ← eB−h(λa0+Aa1,λb0+Ab1)
pA2 ;

14 if r is prime then
15 Use Cornacchia’s algorithm to find solutions for c1, d1 in

h(c1, d1) = r or determine that no solution exists;

16

17 if solution is found then
18 return θ′ = λa0 +Aa1 + (λb0 +Ab1)i+Ac1j +Ad1k;

19 return ⊥

Exercise 3.7. Instead of lifting θ = a + bι, improve on the lifting conditions by
lifting jθ first and then applying the Frobenius isogeny. Show that this way one
can achieve lifting whenever B > pA4.

Finally, we can conclude with the following theorem:
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Theorem 3.8. Let B > pA4, then one can retrieve SIDH secret keys in quan-
tum subexponential time

As a summary, here are the key ingredients of the proof:

– Special subgroup of the starting endomorphism ring modulo A acting freely
and transitively on certain sets of cyclic subgroups

– A lifting algorithm for special endomorphism
– The commutative diagram described in Figure 1
– Kuperberg’s hidden shift algorithm

4 Open problems

In this section we discuss an open problem which arises naturally in this context.
Note that the discussion in this section will be even less formal and precise than
in previous sections.

We have shown in previous sections that having a free and transitive group
action on cyclic subgroups of order A leads to a subexponential attack on over-
stretched SIDH. Note that torsion point images are only used in the lifting
procedure. So one can ask the following question. Suppose you have access to an
oracle which given an endomorphism θ and a curve E/X of distance A, returns
E/θ(X). How hard is it to retrieve X. We have shown that in this case X can be
retrieved in quantum subexponential time. The natural question arises: is there
a polynomial-time algorithm for this task?

We outline a possible approach to tackle this problem. The key idea is trying
to reduce the problem to a hidden subgroup problem as opposed to a hidden
shift problem. Let G0 = PGL2(Z/AZ) and let use the natural action of this
group as before. Now the action will be transitive but far from free. However,
one can look at the stabilizer of an element. The stabilizer will contain multiple
elements now since the order of the stabilizer is |G0| divided by the size of its
orbit. The function X 7→ E/θ(X) is constant along the cosets of the stabilizer
of X, thus computing the stabilizer of X is an instance of the hidden subgroup
problem. Why is a stabilizer useful?

One can look at elements of G0 as matrices in M2(Z/AZ) and kernels as
vectors in (Z/AZ)2 where the group action is multiplying the matrix with the
corresponding vector. Now the stabilizer of a vector (x, y) is essentially a collec-
tion of matrices for which (x, y) is an eigenvector. This implies that if one has
access to several matrices from the stabilizer, then one can compute the secret
X by computing a common eigenvector of these matrices. The main issue here is
that there is no efficient algorithm in general which solves the hidden subgroup
problem for PGL2(Z/AZ). Of course one can restrict the action again to some
subgroup which poses the following open problem:

Problem 4.1. Find a subgroup of PGL2(Z/AZ) such that the corresponding ac-
tion allows to retrieve the secret kernel from the stabilizer and such that the
group admits an efficient hidden subgroup algorithm.
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Here is a quick exercise on how this algorithm could work for a special sub-
group:

Exercise 4.2. Let G0 be the group consisting of the matrices of the form(
1 0
∗ y

)
,

where y is either 1 or -1. Show that G0 is isomorphic to a dihedral group.
Compute the stabilizer of (1, a)T and show how one can retrieve a from the
stabilizer.

Bibliography

[1] Andrew Childs, David Jao, and Vladimir Soukharev. Constructing elliptic
curve isogenies in quantum subexponential time. Journal of Mathematical
Cryptology, 8(1):1–29, 2014.

[2] David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol. On
the quaternion `-isogeny path problem. LMS Journal of Computation and
Mathematics, 17(A):418–432, 2014.

[3] Greg Kuperberg. A subexponential-time quantum algorithm for the dihe-
dral hidden subgroup problem. SIAM Journal on Computing, 35(1):170–188,
2005.
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